References

  1. B.N. Cemre, M. Bekbolet, Role of emerging contaminants on solar photocatalytic treatment of organic matter in reverse osmosis concentrate, Catal. Today, 326 (2019) 101–107.
  2. L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars, J. Environ. Chem. Eng., 8 (2020) 104473, doi: 10.1016/j.jece.2020.104473.
  3. Z. Ghahghaey, M. Hekmati, G.M. Darvish, Theoretical investigation of phenol adsorption on functionalized graphene using DFT calculations for effective removal of organic contaminants from wastewater, J. Mol. Liq., 324 (2021) 114777, doi: 10.1016/j.molliq.2020.114777.
  4. Z.H. Chen, J. Yao, B. Ma, B. Liu, J. Kim, H. Li, X.Z. Zhu, C.C. Zhao, M. Amde, A robust biocatalyst based on laccase immobilized superparamagnetic Fe3O4@SiO2–NH2 nanoparticles and its application for degradation of chlorophenols, Chemosphere, 291 (2022) 132727, doi: 10.1016/j.chemosphere.2021.132727.
  5. Y.X. Zhao, X.J. Qiu, Z.H. Ma, C.L. Zhao, Z.R. Li, S.Y. Zhai, Fabrication of Pd/sludge-biochar electrode with high electrochemical activity on reductive degradation of 4-chlorophenol in wastewater, Environ. Res., 209 (2022) 112740, doi: 10.1016/j.envres.2022.112740.
  6. M.Y. Zhu, J. Lu, L.C. Dong, S.H. Hu, S.H. Peng, C.Z. Zhu, Photochemical transformations of 2,6-dichlorophenol and 2-chlorophenol with superoxide ions in the atmospheric aqueous phase, J. Mol. Struct., 1261 (2022) 132910, doi: 10.1016/j.molstruc.2022.132910.
  7. W. Tirler, A. Basso, Resembling a “natural formation pattern” of chlorinated dibenzo-p-dioxins by varying the experimental conditions of hydrothermal carbonization, Chemosphere, 93 (2013) 1464–1470.
  8. M. Chen, P. Xu, G.M. Zeng, C.P. Yang, D.L. Huang, J.C. Zhang, Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs, Biotechnol. Adv., 33 (2015) 745–755.
  9. M. Czaplicka, Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ., 322 (2004) 21–39.
  10. V. Sivanantham, P.L. Narayana, K.J. Hyeong, P. Pareddy, V. Sangeetha, M. Kyoung-Seok, K.H. In, H.K. Sung, N.S. Reddy, Modeling and optimization of chlorophenol rejection for spiral wound reverse osmosis membrane modules, Chemosphere, 268 (2021) 129345, doi: 10.1016/j.chemosphere.2020.129345.
  11. V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal., B, 225 (2018) 197–206.
  12. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261 (2010) 3–18.
  13. D. Maity, P. Kundu, S. Adhikari (Nee Pramanik), Isolation and characterization of 4-chlorophenol degrading bacterial strain from pharmaceutical xenobiotic compounds contaminated soil using enrichment technique, J. Indian Chem. Soc., 99 (2022) 100336, doi: 10.1016/j.jics.2021.100336.
  14. Z.Y. Zhao, J.N. Zhang, J. Yao, S.J. You, Electrochemical removal of 4-chlorophenol in water using a porous Magnéli-phase (Ti4O7) electrode, Environ. Res., 210 (2022) 113004, doi: 10.1016/j. envres.2022.113004.
  15. N. Domínguez-Morueco, M. Carvalho, J. Sierra, M. Schuhmacher, J.L. Domingo, N. Ratola, M. Nadal, Multi-component determination of atmospheric semi-volatile organic compounds in soils and vegetation from Tarragona County, Catalonia, Spain, Sci. Total Environ., 631–632 (2018) 1138–1152.
  16. L. Bulgariu, L.B. Escudero, O.S. Bello, M. Iqbal, J. Nisar, K.A. Adegoke, F. Alakhras, M. Kornaros, I. Anastopoulos, The utilization of leaf-based adsorbents for dyes removal: a review, J. Mol. Liq., 276 (2019) 728–747.
  17. G. Song, P. Su, Q.Z. Zhang, X.C. Wang, M.H. Zhou, Revisiting UV/sulfite exposed to air: a redox process for reductive dechlorination and oxidative mineralization, Sci. Total Environ., 859 (2023) 160246, doi: 10.1016/j.scitotenv.2022.160246.
  18. S. Praveen, J. Jegan, T.B. Pushpa, R. Gokulan, L. Bulgariu, Biochar for removal of dyes in contaminated water: an overview, Biochar, 4 (2022) 10, doi: 10.1007/s42773-022-00131-8.
  19. J.J. Wei, D.H. Ma, X.R. Ma, Q. Sheng, X.Y. Sun, J.S. Li, X.D. Liu, J.Y. Shen, M. Zheng, L.J. Wang, New insight into increased toxicity during ozonation of chlorophenol: the significant contribution of oxidizing intermediates, Sci. Total Environ., 769 (2021) 144569, doi: 10.1016/j.scitotenv.2020.144569.
  20. Y.E. Dolaksiz, F. Temel, M. Tabakci, Adsorption of phenolic compounds onto calix
  21. arene-bonded silica gels from aqueous solutions, React. Funct. Polym., 126 (2018) 27–35.
  22. G.J. Cai, Z.-l. Ye, Concentration-dependent adsorption behaviors and mechanisms for ammonium and phosphate removal by optimized Mg-impregnated biochar, J. Cleaner Prod., 349 (2022) 131453, doi: 10.1016/j.jclepro.2022.131453.
  23. X.Y. Zhang, X.Y. Wang, J.Q. Meng, Y.Q. Liu, M. Ren, Y.H. Guo, Y.X. Yang, Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants, Sep. Purif. Technol., 255 (2021) 117693, doi: 10.1016/j.seppur.2020.117693.
  24. B. Zhang, R.G. Zhao, D.J. Sun, Y. Li, T. Wu, Sustainable fabrication of graphene oxide/manganese oxide composites for removing phenolic compounds by adsorption-oxidation process, J. Cleaner Prod., 215 (2019) 165–174.
  25. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  26. Y.J. Dai, J.J. Li, D.X. Shan, Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs, Chemosphere, 238 (2020) 124432, doi: 10.1016/j.chemosphere.2019.124432.
  27. S.S. Mao, T. Shen, T. Han, F. Ding, Q. Zhao, M. Gao, Adsorption and co-adsorption of chlorophenols and Cr(VI) by functional organo-vermiculite: experiment and theoretical calculation, Sep. Purif. Technol., 277 (2021) 119638, doi: 10.1016/j.seppur.2021.119638.
  28. X.W. Cao, Z.F. Meng, E. Song, X.X. Sun, X.L. Hu, W.B. Li, Z. Liu, S. Gao, B. Song, Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water, Chemosphere, 299 (2022) 134414, doi: 10.1016/j.chemosphere.2022.134414.
  29. P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng., 10 (2022) 107408, doi: 10.1016/j. jece.2022.107408.
  30. T.C.P. Tran, T.P. Nguyen, T.T. Nguyen, P.C. Le, Q.B. Tran, X.C. Nguyen, Equilibrium single and co-adsorption of nutrients from aqueous solution onto aluminium-modified biochar, Case Stud. Chem. Environ. Eng., 5 (2022) 100181, doi: 10.1016/j.cscee.2022.100181.
  31. N. Zhao, C.F. Zhao, Y.Z. Lv, W.F. Zhang, Y.G. Du, Z.P. Hao, J. Zhang, Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar, Chemosphere, 186 (2017) 422–429.
  32. S. Larous, A.-H. Meniai, The use of sawdust as by product adsorbent of organic pollutant from wastewater: adsorption of phenol, Energy Procedia, 18 (2012) 905–914.
  33. T.T.H. Chu, M.V. Nguyen, Improved Cr(VI) adsorption performance in wastewater and groundwater by synthesized magnetic adsorbent derived from Fe3O4 loaded corn straw biochar, Environ. Res., 216 (2023) 114764, doi: 10.1016/j.envres.2022.114764.
  34. C.T. do Nascimento, M.G.A. Vieira, F.B. Scheufele, F. Palú, E.A. da Silva, C.E. Borba, Adsorption of atrazine from aqueous systems on chemically activated biochar produced from corn straw, J. Environ. Chem. Eng., 10 (2022) 107039, doi: 10.1016/j.jece.2021.107039.
  35. F. Wang, L. Li, J.B. Iqbal, Z.R. Yang, Y.P. Du, Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution, Int. J. Biol. Macromol., 199 (2022) 234–242.
  36. Y.Z. Zhang, S.X. Liang, R. He, J. Zhao, J.H. Lv, W. Kang, J. Zhang, Enhanced adsorption and degradation of antibiotics by doping corncob biochar/PMS with heteroatoms at different preparation temperatures: mechanism, pathway, and relative contribution of reactive oxygen species, J. Water Process Eng., 46 (2022) 102626, doi: 10.1016/j.jwpe.2022.102626.
  37. Q.A. Binh, H.-H. Nguyen, Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar, Bioresour. Technol. Rep., 11 (2020) 100520, doi: 10.1016/j.biteb.2020.100520.
  38. E. Taheri, A. Fatehizadeh, E.C. Lima, M. Rezakazemi, High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution, Chemosphere, 295 (2022) 133850, doi: 10.1016/j.chemosphere.2022.133850.
  39. Z. Li, M. Li, Z.Y. Wang, X. Liu, Coadsorption of Cu(II) and tylosin/sulfamethoxazole on biochar stabilized by nanohydroxyapatite in aqueous environment, Chem. Eng. J., 381 (2020) 122785, doi: 10.1016/j.cej.2019.122785.
  40. Q. Gan, H.J. Hou, S. Liang, J.J. Qiu, S.Y. Tao, L. Yang, W.B. Yu, K.K. Xiao, B.C. Liu, J.P. Hu, Y.F. Wang, J.K. Yang, Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-chlorophenol, Sci. Total Environ., 725 (2020) 138299, doi: 10.1016/j.scitotenv.2020.138299.
  41. X. Jiang, X. Ye, J. Xiao, W.H. Zhang, R. Qiu, The effect of persistent free radicals in sludge derived biochar on p-chlorophenol removal, Chemosphere, 297 (2022) 134218, doi: 10.1016/j.chemosphere.2022.134218.
  42. F.-X. Dong, L. Yan, X.-H. Zhou, S.-T. Huang, J.-Y. Liang, W.-X. Zhang, Z.-W. Guo, P.-R. Guo, W. Qian, L.-J. Kong, W. Chu,
    Z.-H. Diao, Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism, J. Hazard. Mater., 416 (2021) 125930, doi: 10.1016/j.jhazmat.2021.125930.
  43. R. Singh, R.K. Dutta, D.V. Naik, A. Ray, P.K. Kanaujia, High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater, Environ. Challenges, 5 (2021) 100353, doi: 10.1016/j.envc.2021.100353.
  44. T. Zhang, L.C. Zheng, H.J. Yu, J.J. Ren, D. Peng, L.J. Zhang, P.P. Meng, Multiple adsorption systems and electron-scale insights into the high efficiency coadsorption of a novel assembled cellulose via experiments and DFT calculations, J. Hazard. Mater., 416 (2021) 125748, doi: 10.1016/j.jhazmat.2021.125748.
  45. M.J. Ahmed, B.H. Hameed, Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: a review, J. Environ. Manage., 252 (2019) 109617, doi: 10.1016/j.jenvman.2019.109617.
  46. P.Y. Du, L. Xu, Z.J. Ke, J.X. Liu, T. Wang, S. Chen, M. Mei, J.P. Li, S.J. Zhu, A highly efficient biomass-based adsorbent fabricated by graft copolymerization: kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal, J. Colloid Interface Sci., 616 (2022) 12–22.
  47. Z.H. Yin, Y.G. Liu, S.B. Liu, L.H. Jiang, X.F. Tan, G.M. Zeng, M.F. Li, S.J. Liu, S.R. Tian, Y. Fang, Activated magnetic biochar by one-step synthesis: enhanced adsorption and coadsorption for 17β-estradiol and copper, Sci. Total Environ., 639 (2018) 1530–1542.
  48. Y. Zhang, B. Cao, L.L. Zhao, L. Sun, Y. Gao, J.J. Li, F. Yang, Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci., 427 (2018) 147–155.
  49. M. Karimi, M. Shirzad, J.A.C. Silva, A.E. Rodrigues, Biomass/biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions, J. CO2 Util., 57 (2022) 101890, doi: 10.1016/j.jcou.2022.101890.
  50. G. Liu, H.R. Tang, J.J. Fan, Z.H. Xie, T.Y. He, R. Shi, B. Liao, Removal of 2,4,6-trichlorophenol from water by Eupatorium adenophorum biochar-loaded nano-iron/nickel, Bioresour. Technol., 289 (2019) 121734, doi: 10.1016/j.biortech.2019.121734.
  51. H. Li, S.Y. Li, L. Jin, Z. Lu, M.H. Xiang, C. Wang, W.B. Wang, J. Zhang, C.Y. Li, H.J. Xie, Activation of peroxymonosulfate by magnetic Fe3S4/biochar composites for the efficient degradation of 2,4,6-trichlorophenol: synergistic effect and mechanism, J. Environ. Chem. Eng., 10 (2022) 107085, doi: 10.1016/j.jece.2021.107085.
  52. D.L. Wei, C.F. Zhao, A. Khan, L. Sun, Y.F. Ji, Y.J. Ai, X.K. Wang, Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: a DFT and MD simulation study, Chem. Eng. J., 375 (2019) 121964, doi: 10.1016/j. cej.2019.121964.
  53. P.S. Fabian, D.H. Lee, S.W. Shin, J.-H. Kang, Assessment of pyrene adsorption on biochars prepared from green infrastructure plants: toward a closed-loop recycling in managing toxic stormwater pollutants, J. Water Process Eng., 48 (2022) 102929, doi: 10.1016/j.jwpe.2022.102929.
  54. X.P. Yang, D. Jiang, X.X. Cheng, C. Yuan, S. Wang, Z.X. He, S. Esakkimuthu, Adsorption properties of seaweed-based biochar with the greenhouse gases (CO2, CH4, N2O) through density functional theory (DFT), Biomass Bioenergy, 163 (2022) 106519, doi: 10.1016/j.biombioe.2022.106519.
  55. Q. Xu, Q. Zhou, M.M. Pan, L.C. Dai, Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation, Chem. Eng. J., 382 (2020) 122705, doi: 10.1016/j.cej.2019.122705.
  56. B. Okolo, C. Park, M.A. Keane, Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media, J. Colloid Interface Sci., 226 (2000) 308–317.
  57. M.T. Sekulic, N. Boskovic, M. Milanovic, N.G. Letic, E. Gligoric, S. Pap, An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: mechanisms, modelling and metal coadsorption, J. Mol. Liq., 284 (2019) 372–382.
  58. A. Tóth, A. Törőcsik, E. Tombácz, K. László, Competitive adsorption of phenol and 3-chlorophenol on purified MWCNTs, J. Colloid Interface Sci., 387 (2012) 244–249.
  59. Y.J. Zhao, X.T. Liu, W.H. Li, K. Huang, H.Q. Shao, C. Qu, J.M. Liu, One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: enhanced adsorption capacities for Enrofloxacin and interfacial interaction mechanisms, Chemosphere, 290 (2022) 133263, doi: 10.1016/j.chemosphere.2021.133263.