References
- B.N. Cemre, M. Bekbolet, Role of emerging contaminants on
solar photocatalytic treatment of organic matter in reverse
osmosis concentrate, Catal. Today, 326 (2019) 101–107.
- L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho,
M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Treatment of effluents
containing 2-chlorophenol by adsorption onto chemically and
physically activated biochars, J. Environ. Chem. Eng., 8 (2020)
104473, doi: 10.1016/j.jece.2020.104473.
- Z. Ghahghaey, M. Hekmati, G.M. Darvish, Theoretical
investigation of phenol adsorption on functionalized graphene
using DFT calculations for effective removal of organic
contaminants from wastewater, J. Mol. Liq., 324 (2021) 114777,
doi: 10.1016/j.molliq.2020.114777.
- Z.H. Chen, J. Yao, B. Ma, B. Liu, J. Kim, H. Li, X.Z. Zhu, C.C. Zhao,
M. Amde, A robust biocatalyst based on laccase immobilized
superparamagnetic Fe3O4@SiO2–NH2 nanoparticles and its
application for degradation of chlorophenols, Chemosphere,
291 (2022) 132727, doi: 10.1016/j.chemosphere.2021.132727.
- Y.X. Zhao, X.J. Qiu, Z.H. Ma, C.L. Zhao, Z.R. Li,
S.Y. Zhai, Fabrication of Pd/sludge-biochar electrode with
high electrochemical activity on reductive degradation of
4-chlorophenol in wastewater, Environ. Res., 209 (2022) 112740,
doi: 10.1016/j.envres.2022.112740.
- M.Y. Zhu, J. Lu, L.C. Dong, S.H. Hu, S.H. Peng, C.Z. Zhu,
Photochemical transformations of 2,6-dichlorophenol and
2-chlorophenol with superoxide ions in the atmospheric
aqueous phase, J. Mol. Struct., 1261 (2022) 132910, doi: 10.1016/j.molstruc.2022.132910.
- W. Tirler, A. Basso, Resembling a “natural formation pattern”
of chlorinated dibenzo-p-dioxins by varying the experimental
conditions of hydrothermal carbonization, Chemosphere,
93 (2013) 1464–1470.
- M. Chen, P. Xu, G.M. Zeng, C.P. Yang, D.L. Huang, J.C. Zhang,
Bioremediation of soils contaminated with polycyclic aromatic
hydrocarbons, petroleum, pesticides, chlorophenols and
heavy metals by composting: applications, microbes and
future research needs, Biotechnol. Adv., 33 (2015) 745–755.
- M. Czaplicka, Sources and transformations of chlorophenols in
the natural environment, Sci. Total Environ., 322 (2004) 21–39.
- V. Sivanantham, P.L. Narayana, K.J. Hyeong, P. Pareddy,
V. Sangeetha, M. Kyoung-Seok, K.H. In, H.K. Sung, N.S. Reddy,
Modeling and optimization of chlorophenol rejection for spiral
wound reverse osmosis membrane modules, Chemosphere,
268 (2021) 129345, doi: 10.1016/j.chemosphere.2020.129345.
- V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío,
M.C. Hidalgo, Enhanced photocatalytic removal of phenol from
aqueous solutions using ZnO modified with Ag, Appl. Catal., B,
225 (2018) 197–206.
- S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib,
Heterogeneous photocatalytic degradation of phenols in
wastewater: a review on current status and developments,
Desalination, 261 (2010) 3–18.
- D. Maity, P. Kundu, S. Adhikari (Nee Pramanik), Isolation and
characterization of 4-chlorophenol degrading bacterial strain
from pharmaceutical xenobiotic compounds contaminated soil
using enrichment technique, J. Indian Chem. Soc., 99 (2022)
100336, doi: 10.1016/j.jics.2021.100336.
- Z.Y. Zhao, J.N. Zhang, J. Yao, S.J. You, Electrochemical removal
of 4-chlorophenol in water using a porous Magnéli-phase
(Ti4O7) electrode, Environ. Res., 210 (2022) 113004, doi: 10.1016/j.
envres.2022.113004.
- N. Domínguez-Morueco, M. Carvalho, J. Sierra, M. Schuhmacher,
J.L. Domingo, N. Ratola, M. Nadal, Multi-component
determination of atmospheric semi-volatile organic compounds
in soils and vegetation from Tarragona County, Catalonia,
Spain, Sci. Total Environ., 631–632 (2018) 1138–1152.
- L. Bulgariu, L.B. Escudero, O.S. Bello, M. Iqbal, J. Nisar,
K.A. Adegoke, F. Alakhras, M. Kornaros, I. Anastopoulos, The
utilization of leaf-based adsorbents for dyes removal: a review,
J. Mol. Liq., 276 (2019) 728–747.
- G. Song, P. Su, Q.Z. Zhang, X.C. Wang, M.H. Zhou, Revisiting
UV/sulfite exposed to air: a redox process for reductive
dechlorination and oxidative mineralization, Sci. Total
Environ., 859 (2023) 160246, doi: 10.1016/j.scitotenv.2022.160246.
- S. Praveen, J. Jegan, T.B. Pushpa, R. Gokulan, L. Bulgariu,
Biochar for removal of dyes in contaminated water: an
overview, Biochar, 4 (2022) 10, doi: 10.1007/s42773-022-00131-8.
- J.J. Wei, D.H. Ma, X.R. Ma, Q. Sheng, X.Y. Sun, J.S. Li, X.D. Liu,
J.Y. Shen, M. Zheng, L.J. Wang, New insight into increased
toxicity during ozonation of chlorophenol: the significant
contribution of oxidizing intermediates, Sci. Total Environ.,
769 (2021) 144569, doi: 10.1016/j.scitotenv.2020.144569.
- Y.E. Dolaksiz, F. Temel, M. Tabakci, Adsorption of phenolic
compounds onto calix
- arene-bonded silica gels from
aqueous solutions, React. Funct. Polym., 126 (2018) 27–35.
- G.J. Cai, Z.-l. Ye, Concentration-dependent adsorption
behaviors and mechanisms for ammonium and phosphate
removal by optimized Mg-impregnated biochar, J. Cleaner
Prod., 349 (2022) 131453, doi: 10.1016/j.jclepro.2022.131453.
- X.Y. Zhang, X.Y. Wang, J.Q. Meng, Y.Q. Liu, M. Ren,
Y.H. Guo, Y.X. Yang, Robust Z-scheme g-C3N4/WO3 heterojunction
photocatalysts with morphology control of WO3
for efficient degradation of phenolic pollutants, Sep. Purif.
Technol., 255 (2021) 117693, doi: 10.1016/j.seppur.2020.117693.
- B. Zhang, R.G. Zhao, D.J. Sun, Y. Li, T. Wu, Sustainable
fabrication of graphene oxide/manganese oxide composites
for removing phenolic compounds by adsorption-oxidation
process, J. Cleaner Prod., 215 (2019) 165–174.
- M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent
for contaminant management in soil and water: a review,
Chemosphere, 99 (2014) 19–33.
- Y.J. Dai, J.J. Li, D.X. Shan, Adsorption of tetracycline in
aqueous solution by biochar derived from waste Auricularia
auricula dregs, Chemosphere, 238 (2020) 124432, doi: 10.1016/j.chemosphere.2019.124432.
- S.S. Mao, T. Shen, T. Han, F. Ding, Q. Zhao, M. Gao, Adsorption
and co-adsorption of chlorophenols and Cr(VI) by functional
organo-vermiculite: experiment and theoretical calculation,
Sep. Purif. Technol., 277 (2021) 119638, doi: 10.1016/j.seppur.2021.119638.
- X.W. Cao, Z.F. Meng, E. Song, X.X. Sun, X.L. Hu, W.B. Li, Z. Liu,
S. Gao, B. Song, Co-adsorption capabilities and mechanisms of
bentonite enhanced sludge biochar for de-risking norfloxacin
and Cu2+ contaminated water, Chemosphere, 299 (2022) 134414,
doi: 10.1016/j.chemosphere.2022.134414.
- P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau,
G.L. Dotto, Investigation of biochar from Cedrella fissilis applied
to the adsorption of atrazine herbicide from an aqueous
medium, J. Environ. Chem. Eng., 10 (2022) 107408, doi: 10.1016/j.
jece.2022.107408.
- T.C.P. Tran, T.P. Nguyen, T.T. Nguyen, P.C. Le, Q.B. Tran,
X.C. Nguyen, Equilibrium single and co-adsorption of nutrients
from aqueous solution onto aluminium-modified biochar, Case
Stud. Chem. Environ. Eng., 5 (2022) 100181, doi: 10.1016/j.cscee.2022.100181.
- N. Zhao, C.F. Zhao, Y.Z. Lv, W.F. Zhang, Y.G. Du, Z.P. Hao,
J. Zhang, Adsorption and coadsorption mechanisms of
Cr(VI) and organic contaminants on H3PO4 treated biochar,
Chemosphere, 186 (2017) 422–429.
- S. Larous, A.-H. Meniai, The use of sawdust as by product
adsorbent of organic pollutant from wastewater: adsorption of
phenol, Energy Procedia, 18 (2012) 905–914.
- T.T.H. Chu, M.V. Nguyen, Improved Cr(VI) adsorption
performance in wastewater and groundwater by synthesized
magnetic adsorbent derived from Fe3O4 loaded corn straw
biochar, Environ. Res., 216 (2023) 114764, doi: 10.1016/j.envres.2022.114764.
- C.T. do Nascimento, M.G.A. Vieira, F.B. Scheufele, F. Palú,
E.A. da Silva, C.E. Borba, Adsorption of atrazine from aqueous
systems on chemically activated biochar produced from corn
straw, J. Environ. Chem. Eng., 10 (2022) 107039, doi: 10.1016/j.jece.2021.107039.
- F. Wang, L. Li, J.B. Iqbal, Z.R. Yang, Y.P. Du, Preparation of
magnetic chitosan corn straw biochar and its application in
adsorption of amaranth dye in aqueous solution, Int. J. Biol.
Macromol., 199 (2022) 234–242.
- Y.Z. Zhang, S.X. Liang, R. He, J. Zhao, J.H. Lv, W. Kang,
J. Zhang, Enhanced adsorption and degradation of antibiotics
by doping corncob biochar/PMS with heteroatoms at different
preparation temperatures: mechanism, pathway, and relative
contribution of reactive oxygen species, J. Water Process
Eng., 46 (2022) 102626, doi: 10.1016/j.jwpe.2022.102626.
- Q.A. Binh, H.-H. Nguyen, Investigation the isotherm
and kinetics of adsorption mechanism of herbicide
2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar,
Bioresour. Technol. Rep., 11 (2020) 100520, doi: 10.1016/j.biteb.2020.100520.
- E. Taheri, A. Fatehizadeh, E.C. Lima, M. Rezakazemi,
High surface area acid-treated biochar from pomegranate
husk for 2,4-dichlorophenol adsorption from aqueous
solution, Chemosphere, 295 (2022) 133850, doi: 10.1016/j.chemosphere.2022.133850.
- Z. Li, M. Li, Z.Y. Wang, X. Liu, Coadsorption of Cu(II) and
tylosin/sulfamethoxazole on biochar stabilized by nanohydroxyapatite
in aqueous environment, Chem. Eng. J.,
381 (2020) 122785, doi: 10.1016/j.cej.2019.122785.
- Q. Gan, H.J. Hou, S. Liang, J.J. Qiu, S.Y. Tao, L. Yang, W.B. Yu,
K.K. Xiao, B.C. Liu, J.P. Hu, Y.F. Wang, J.K. Yang, Sludge-derived
biochar with multivalent iron as an efficient Fenton catalyst for
degradation of 4-chlorophenol, Sci. Total Environ., 725 (2020)
138299, doi: 10.1016/j.scitotenv.2020.138299.
- X. Jiang, X. Ye, J. Xiao, W.H. Zhang, R. Qiu, The effect
of persistent free radicals in sludge derived biochar on
p-chlorophenol removal, Chemosphere, 297 (2022) 134218,
doi: 10.1016/j.chemosphere.2022.134218.
- F.-X. Dong, L. Yan, X.-H. Zhou, S.-T. Huang, J.-Y. Liang,
W.-X. Zhang, Z.-W. Guo, P.-R. Guo, W. Qian, L.-J. Kong, W. Chu,
Z.-H. Diao, Simultaneous adsorption of Cr(VI) and phenol by
biochar-based iron oxide composites in water: performance,
kinetics and mechanism, J. Hazard. Mater., 416 (2021) 125930,
doi: 10.1016/j.jhazmat.2021.125930.
- R. Singh, R.K. Dutta, D.V. Naik, A. Ray, P.K. Kanaujia, High
surface area Eucalyptus wood biochar for the removal of phenol
from petroleum refinery wastewater, Environ. Challenges,
5 (2021) 100353, doi: 10.1016/j.envc.2021.100353.
- T. Zhang, L.C. Zheng, H.J. Yu, J.J. Ren, D. Peng, L.J. Zhang,
P.P. Meng, Multiple adsorption systems and electron-scale
insights into the high efficiency coadsorption of a novel
assembled cellulose via experiments and DFT calculations,
J. Hazard. Mater., 416 (2021) 125748, doi: 10.1016/j.jhazmat.2021.125748.
- M.J. Ahmed, B.H. Hameed, Insights into the isotherm and
kinetic models for the coadsorption of pharmaceuticals in
the absence and presence of metal ions: a review, J. Environ.
Manage., 252 (2019) 109617, doi: 10.1016/j.jenvman.2019.109617.
- P.Y. Du, L. Xu, Z.J. Ke, J.X. Liu, T. Wang, S. Chen, M. Mei, J.P. Li,
S.J. Zhu, A highly efficient biomass-based adsorbent fabricated
by graft copolymerization: kinetics, isotherms, mechanism
and coadsorption investigations for cationic dye and heavy
metal, J. Colloid Interface Sci., 616 (2022) 12–22.
- Z.H. Yin, Y.G. Liu, S.B. Liu, L.H. Jiang, X.F. Tan, G.M. Zeng,
M.F. Li, S.J. Liu, S.R. Tian, Y. Fang, Activated magnetic biochar
by one-step synthesis: enhanced adsorption and coadsorption
for 17β-estradiol and copper, Sci. Total Environ., 639 (2018)
1530–1542.
- Y. Zhang, B. Cao, L.L. Zhao, L. Sun, Y. Gao, J.J. Li, F. Yang,
Biochar-supported reduced graphene oxide composite for
adsorption and coadsorption of atrazine and lead ions,
Appl. Surf. Sci., 427 (2018) 147–155.
- M. Karimi, M. Shirzad, J.A.C. Silva, A.E. Rodrigues, Biomass/biochar carbon materials for CO2 capture and sequestration
by cyclic adsorption processes: a review and prospects for
future directions, J. CO2 Util., 57 (2022) 101890, doi: 10.1016/j.jcou.2022.101890.
- G. Liu, H.R. Tang, J.J. Fan, Z.H. Xie, T.Y. He, R. Shi, B. Liao,
Removal of 2,4,6-trichlorophenol from water by Eupatorium
adenophorum biochar-loaded nano-iron/nickel, Bioresour.
Technol., 289 (2019) 121734, doi: 10.1016/j.biortech.2019.121734.
- H. Li, S.Y. Li, L. Jin, Z. Lu, M.H. Xiang, C. Wang, W.B. Wang,
J. Zhang, C.Y. Li, H.J. Xie, Activation of peroxymonosulfate by
magnetic Fe3S4/biochar composites for the efficient degradation
of 2,4,6-trichlorophenol: synergistic effect and mechanism,
J. Environ. Chem. Eng., 10 (2022) 107085, doi: 10.1016/j.jece.2021.107085.
- D.L. Wei, C.F. Zhao, A. Khan, L. Sun, Y.F. Ji, Y.J. Ai, X.K. Wang,
Sorption mechanism and dynamic behavior of graphene oxide
as an effective adsorbent for the removal of chlorophenol
based environmental-hormones: a DFT and MD simulation
study, Chem. Eng. J., 375 (2019) 121964, doi: 10.1016/j.
cej.2019.121964.
- P.S. Fabian, D.H. Lee, S.W. Shin, J.-H. Kang, Assessment
of pyrene adsorption on biochars prepared from green
infrastructure plants: toward a closed-loop recycling in
managing toxic stormwater pollutants, J. Water Process Eng.,
48 (2022) 102929, doi: 10.1016/j.jwpe.2022.102929.
- X.P. Yang, D. Jiang, X.X. Cheng, C. Yuan, S. Wang, Z.X. He,
S. Esakkimuthu, Adsorption properties of seaweed-based
biochar with the greenhouse gases (CO2, CH4, N2O) through
density functional theory (DFT), Biomass Bioenergy, 163 (2022)
106519, doi: 10.1016/j.biombioe.2022.106519.
- Q. Xu, Q. Zhou, M.M. Pan, L.C. Dai, Interaction between
chlortetracycline and calcium-rich biochar: enhanced removal
by adsorption coupled with flocculation, Chem. Eng. J.,
382 (2020) 122705, doi: 10.1016/j.cej.2019.122705.
- B. Okolo, C. Park, M.A. Keane, Interaction of phenol and
chlorophenols with activated carbon and synthetic zeolites in
aqueous media, J. Colloid Interface Sci., 226 (2000) 308–317.
- M.T. Sekulic, N. Boskovic, M. Milanovic, N.G. Letic, E. Gligoric,
S. Pap, An insight into the adsorption of three emerging
pharmaceutical contaminants on multifunctional carbonous
adsorbent: mechanisms, modelling and metal coadsorption,
J. Mol. Liq., 284 (2019) 372–382.
- A. Tóth, A. Törőcsik, E. Tombácz, K. László, Competitive
adsorption of phenol and 3-chlorophenol on purified
MWCNTs, J. Colloid Interface Sci., 387 (2012) 244–249.
- Y.J. Zhao, X.T. Liu, W.H. Li, K. Huang, H.Q. Shao, C. Qu, J.M. Liu,
One-step synthesis of garlic peel derived biochar by concentrated
sulfuric acid: enhanced adsorption capacities for Enrofloxacin
and interfacial interaction mechanisms, Chemosphere,
290 (2022) 133263, doi: 10.1016/j.chemosphere.2021.133263.