References

  1. L. Chen, L. Wang, X. Wu, X. Ding, A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry, J. Cleaner Prod., 143 (2017) 1137–1143.
  2. C. Phalakornkule, S. Polgumhang, W. Tongdaung, Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent, J. Environ. Manage., 91 (2010) 918–926.
  3. G.T. Güyer, K. Nadeem, N. Dizge, Recycling of pad-batch washing textile wastewater through advanced oxidation processes and its reusability assessment for Turkish textile industry, J. Cleaner Prod., 139 (2016) 488–494.
  4. I. Pillai, M. Sasidharan, A.K. Gupta, Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: energy consumption, mass transfer coefficient and economic analysis, J. Environ. Manage., 193 (2017) 524–531.
  5. K. Hasani, M. Moradi, SA. Mokhtari, H. Sadeghi, A. Dargahi, M. Vosoughi, Degradation of Basic Violet 16 dye by electroactivated persulfate process from aqueous solutions and toxicity assessment using microorganisms: determination of by-products, reaction kinetic and optimization using Box–Behnken design, Int. J. Chem. React., 19 (2021) 261–275.
  6. M.R. Samarghandi, A. Dargahi, H. Zolghadr Nasab, E. Ghahramani, S. Salehi, Degradation of azo dye Acid Red 14 (AR14) from aqueous solution using H2O2/nZVI and S2O82–/nZVI processes in the presence of UV irradiation, Water Environ. Res., 92 (2020) 1173–1183.
  7. A. Bafana, S.S. Devi, T. Chakrabarti, Azo dyes: past, present and the future, Environ. Rev., 19 (2011) 350–370.
  8. V. Khandegar, A.K. Saroha, Electrochemical treatment of textile effluent containing Acid Red 131 dye, J. Hazard. Toxic Radioact. Waste, 18 (2014) 38–44.
  9. C.D. Raman, S. Kanmani, Textile dye degradation using nano zero valent iron: a review, J. Environ. Manage., 177 (2016) 341–355.
  10. F.M.M. Paschoal, G. Tremiliosi-Filho, Aplicação da tecnologia de eletrofloculação na recuperação do corante índigo blue a partir de efluentes industriais, Quim. Nova, 28 (2005) 766–772.
  11. A. Cerqueira, C. Russo, M.R.C. Marques, Electrofloculation for textile wastewater treatment, Braz. J. Chem. Eng., 26 (2009) 659–668.
  12. A.N. Módenes, F.R. Espinoza-Quiñones, D.R. Manenti, F.H. Borba, S.M. Palácio, A. Colombo, Performance evaluation of a photo-Fenton process applied to pollutant removal from textile effluents in a batch system, J. Environ. Manage., 104 (2012) 1–8.
  13. R. Lambretch, Adsorption of the dye Reactive Blue 5G in retorted shale, Braz. J. Chem. Eng., 32 (2015) 269–281.
  14. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  15. A. Kunz, P. Peralta-zamora, Novas tendências no tratamento de efluentes têxteis, Quím. Nova, 25 (2002) 78–82.
  16. M.F. Klen, Adsorption kinetics of Blue 5G dye from aqueous solution on dead floating aquatic macrophyte: effect of pH, temperature, and pretreatment, Water Air Soil Pollut., 223 (2012) 4369–4381.
  17. A. Peyghami, A. Moharrami, Y. Rashtbari, S. Afshin, M. Vosuoghi, A. Dargahi, Evaluation of the efficiency of magnetized clinoptilolite zeolite with Fe3O4 nanoparticles on the removal of Basic Violet 16 (BV16) dye from aqueous solutions, J. Dispersion Sci. Technol., 44 (2021) 278–287.
  18. O.T. Can, M. Bayramoglu, M. Kobya, Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes, Ind. Eng. Chem. Res., 2 (2003) 3391–3396.
  19. P. Jegathambal, A. Gafoor, Two-stage hybrid electrocoagulation– adsorption in the removal of disperse dyes and inorganic salts from the textile dyeing effluent, Desal. Water Treat., 237 (2021) 27685, doi: 10.5004/dwt.2021.27685.
  20. M. Rahmanihanzaki, A. Hemmati, A review of mineral carbonation by alkaline solid waste, Int. J. Greenhouse Gas Control, 121 (2022) 103798, doi: 10.1016/j.ijggc.2022.103798.
  21. D. Ghernaout, M.W. Naceur, B. Ghernaout, A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation, Desal. Water Treat., 28 (2011) 287–320.
  22. B. Merzouk, K. Madani, A. Sekki, Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies, Desalination, 250 (2010) 573–577.
  23. A. Akhtar, Z. Aslam, A. Asghar, M.M. Bello, A.A.A. Raman, Electrocoagulation of Congo Red dye-containing wastewater: optimization of operational parameters and process mechanism, J. Environ. Chem. Eng., 8 (2020) 104055, doi: 10.1016/j.jece.2020.104055.
  24. A.R. Amani-ghadim, S. Aber, A. Olad, H. Ashassi-sorkhabi, Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions, Chem. Eng. Process. Process Intensif., 64 (2013) 68–78.
  25. A.S. Assémian, K.E. Kouassi, A.E. Zogbé, K. Adouby, P. Drogui, In-situ generation of effective coagulant to treat textile biorefractory wastewater: optimization through response surface methodology, J. Environ. Chem. Eng., 6 (2018) 5587–5594.
  26. N.S. Houssini, A. Essadki, E. Elqars, Removal of Reactive Blue and disperse red dyes from synthetic textile effluent by electrocoagulation process using Al-Al and Fe-Fe electrodes: parametric optimization by response surface methodology, Desal. Water Treat., 223 (2021) 363–379.
  27. B.K. Nandi, S. Patel, Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation, Arabian J. Chem., 10 (2017) S2961–S2968.
  28. E. Pajootan, M. Arami, N. Mohammad, Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters, J. Taiwan Inst. Chem. Eng., 43 (2012) 282–290.
  29. B.S. Santos, E. Eyng, P.R.S. Bittencourt, L.M. Frare, E.L. Flores, M.B. Costa, Electro-flocculation associated with the extract of Moringa oleifera Lam as natural coagulant for the removal of Reactive Blue 5G dye, Acta Sci. Technol., 38 (2016) 438–444.
  30. S. Zodi, B. Merzouk, O. Potier, F. Lapicque, J. Leclerc, Direct Red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Sep. Purif. Technol., 108 (2013) 215–222.
  31. S. Singh, V.C. Srivastava, I.D. Mall, Mechanistic study of electrochemical treatment of Basic Green 4 dye with aluminum electrodes through zeta potential, TOC, COD and color measurements, and characterization of residues, RSC Adv., 3 (2013) 16426–15439.
  32. A. Doggaz, A. Attour, M. le Page Mostefa, M. Tlili, F. Lapicque, Iron removal from waters by electrocoagulation: investigations of the various physicochemical phenomena involved, Sep. Purif. Technol., 203 (2018) 217–225.
  33. J. Silva, N. Graça, A. Ribeiro, A. Rodrigues, A, Electrocoagulation process for the removal of co-existing fluoride, arsenic and iron from contaminated drinking water, Sep. Purif. Technol., 197 (2018) 237–243.
  34. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC) — science and applications, J. Hazard. Mater., B, 84 (2001) 29–41.
  35. K.S. Hashim, A. Shaw, R. AlKhaddar, P. Kot, A. Al-Shamma’a, Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment, J. Cleaner Prod., 280 (2021) 124427, doi: 10.1016/j.jclepro.2020.124427.
  36. W. Bouguerra, K. Brahmi, E. Elaloui, M. Loungou, Optimization of electrocoagulation operating parameters and reactor design for zinc removal: application to industrial Tunisian wastewater, Desal. Water Treat., 56 (2015) 2706–2714.
  37. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  38. P.K. Holt, G.W. Barton, C.A. Mitchell, The future for electrocoagulation as a localised water treatment technology, Chemosphere, 59 (2007) 355–367.
  39. P. Cañizares, F. Martínez, M.A. Rodrigo, C. Jiménez, C. Sáez, J. Lobato, Modelling of wastewater electrocoagulation processes. Part I. General description and application to kaolin-polluted wastewaters, Sep. Purif. Technol., 60 (2008) 155–161.
  40. A.I. Adeogun, R.B. Balakrishnan, Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye Rhodamine B from aqueous solution using steel electrodes, Appl. Water Sci., 7 (2017),
    doi: 10.1007/s13201-015-0337-4.
  41. K.P. de Amorim, L.L. Romualdo, L.S. Andrade, Electrochemical degradation of sulfamethoxazole and trimethoprim at borondoped diamond electrode: performance, kinetics and reaction pathway, Sep. Purif. Technol., 120 (2013) 319–327.
  42. M.R. Majdi, I. Danaee, S. Nikmanesh, Kinetic and thermodynamic investigations on the electrocoagulation of methyl orange from aqueous solution using aluminum electrodes, Bulg. Chem. Commun., 48 (2016) 628–635.
  43. K.L. Dubrawski, C. Du, M. Mohseni, General potential-current model and validation for electrocoagulation, Electrochim. Acta, 129 (2014) 187–195.
  44. A. Vázquez, J.L. Nava, R. Cruz, I. Lázaro, I. Rodríguez, The importance of current distribution and cell hydrodynamic analysis for the design of electrocoagulation reactors, J. Chem. Technol. Biotechnol., 89 (2013) 220–229.
  45. A.I. Vázquez, F.J. Almazán, M.C. Díaz, J.A. Delgadillo, M.I. Lázaro, C. Ojeda, I. Rodríguez, Characterization of a multiple-channel electrochemical cell by computational fluid dynamics (CFD) and residence time distribution (RTD), ECS Trans., 29 (2010) 215–233.
  46. D. Ghernaout, N. Elboughdiri, An insight in electrocoagulation process through current density distribution (CDD), Open Access Lib. J., 7 (2020) 1–12, doi: 10.4236/oalib.1106142.
  47. T. Höhne, V.F. Asl, L.O. Villacorte, M. Herskind, M. Momeni, D. Al-Fayyad, S. Taș-Köhler, A. Lerch, Numerical investigation of degasification in an electrocoagulation reactor, Water (Switzerland), 13 (2021), doi: 10.3390/w13192607.
  48. P. Xiang, Y. Wan, X. Wang, H. Lian, Numerical simulation and experimental study of electrocoagulation grid flocculation tank, Water Sci. Technol., 78 (2018) 786–794.
  49. M. Acil, M. Chafi, B. Gourich, Y. Stiriba, C. Vial, Modeling and Simulation by CFD of an Electrocoagulation Reactor, 12th International Conference on Gas-Liquid & Gas-Liquid-Solid Reactor Engineering, AIChe (American Institute of Chemical Engineers) CEI (Center for Energy Initiatives), New York, NY, U.S.A., 2015.
  50. H.S. Al-Barakat, F.K. Matloub, S.K. Ajjam, T.A. Al-Hattab, Modeling and simulation of wastewater electrocoagulation reactor, IOP Conf. Ser.: Mater. Sci. Eng., 871 (2020) 012002,
    doi: 10.1088/1757-899X/871/1/012002.
  51. L. Huang, D. Li, J. Liu, L. Yang, C. Dai, N. Ren, Y. Feng, CFD simulation of mass transfer in electrochemical reactor with mesh cathode for higher phenol degradation, Chemosphere, 262 (2021) 127626, doi: 10.1016/j.chemosphere.2020.127626.
  52. A. Safonyk, O. Prysiazhniuk, Modeling of the electrocoagulation processes in nonisothermal conditions, Model. Simul. Eng., 2019 (2019), doi: 10.1155/2019/9629643.
  53. P. Song, Q. Song, Z. Yang, G. Zeng, H. Xu, X. Li, W. Xiong, Numerical simulation and exploration of electrocoagulation process for arsenic and antimony removal: electric field, flow field, and mass transfer studies, J. Environ. Manage., 228 (2018) 336–345.
  54. J. Su, H.Y. Lu, H. Xu, J.R. Sun, J.L. Han, H.B. Lin, Mass transfer enhancement for mesh electrode in a tubular electrochemical reactor using experimental and numerical simulation method, Russ. J. Electrochem., 47 (2011) 1293–1298.
  55. A.H. Hawari, A.M. Alkhatib, M. Hafiz, P. Das, A novel electrocoagulation electrode configuration for the removal of total organic carbon from primary treated municipal wastewater, Environ. Sci. Pollut. Res., 27 (2020) 23888–23898.
  56. A.I. Adeogun, R.B. Balakrishnan, Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye Rhodamine B from aqueous solution using steel electrodes, Appl. Water Sci., 7 (2017) 1711–1723.
  57. C.L.M. Gasparovic, E. Eyng, L.M. Frare, F. Orssatto, L.B.C. Sabbi, I.J. Baraldi, Kinetics modeling and experimental validation of Reactive Blue 5G dye removal from synthetic solution by electrocoagulation, Desal. Water Treat., 165 (2019) 24331, doi: 10.5004/dwt.2019.24331.
  58. D.T. Moussa, M.H. El-naas, M. Nasser, M.J. Al-marri, A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage., 186 (2017) 24–41.
  59. F.M. White, Fluid Mechanics, 8th ed., McGraw-Hill Education, New York, 2016.
  60. M. Carrillo, J.M. González, A New Approach to Modelling Sigmoidal Curves, Universidad de La Laguna, Tenerife, Canary Islands, Spain, 2002.
  61. COMSOL Multiphysics® v. 5.4 COMSOL AB, CFD Module User’s Guide, Stockholm, 2018. Available at www.comsol.com/blogs
  62. A.N. Colli, J.M. Bisang, Evaluation of the hydrodynamic behavior of turbulence promoters in parallel plate electeochemical reactors by means of the dispersion model, Electrochim. Acta, 56 (2011) 7312–7318.
  63. B. Merzouk, B. Gourich, K. Madani, C. Vial, A. Sekki, Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study, Desalination, 272 (2011) 246–253.
  64. S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini, H. Hamitouche, Electrocoagulation process applied to wastewater containing dyes from textile industry, Chem. Eng. Process. Process Intensif., 49 (2010) 1176–1182.