References
- N. Sillero, A. Márcia Barbosa, Common mistakes in ecological
niche models, Int. J. Geogr. Inf. Sci., 35 (2021) 213–226.
- J. Willard, X. Jia, S. Xu, M. Steinbach, V. Kumar, Integrating
scientific knowledge with machine learning for engineering
and environmental systems, ACM Comput. Surv., 55 (2022)
1–37, doi: 10.1145/3514228.
- C. Li, Y. Zhang, S. Zhang, J. Wang, Applying the Super-EBM
model and spatial Durbin model to examining total-factor
ecological efficiency from a multi-dimensional perspective:
evidence from China, Environ. Sci. Pollut. Res., 29 (2022)
2183–2202.
- Q. Guan, Y. Yao, T. Ma, Y. Hong, Y. Bie, J. Lyu, Under the dome:
a 3D urban texture model and its relationship with urban
land surface temperature, Ann. Am. Assoc. Geogr., 112 (2022)
1369–1389.
- K.D. Pearson, G. Nelson, M.F.J. Aronson, P. Bonnet,
L. Brenskelle, C.C. Davis, E.G. Denny, E.R. Ellwood, H. Goëau,
J. Mason Heberling, A. Joly, T. Lorieul, S.J. Mazer, E.K. Meineke,
B.J. Stucky, P. Sweene, Machine learning using digitized
herbarium specimens to advance phenological research,
BioScience, 70 (2020) 610–620.
- M. Pichler, V. Boreux, A.-M. Klein, M. Schleuning, F. Hartig,
Machine learning algorithms to infer trait-matching and
predict species interactions in ecological networks, Methods
Ecol. Evol., 11 (2020) 281–293.
- V. Hosu, H. Lin, T. Sziranyi, S. Saupe, KonIQ-10k: An
ecologically valid database for deep learning of blind image
quality assessment, IEEE Trans. Image Process., 29 (2020)
4041–4056.
- F. Huang, J. Zhang, C. Zhou, Y. Wang, J. Huang, L. Zhu, A deep
learning algorithm using a fully connected sparse autoencoder
neural network for landslide susceptibility prediction,
Landslides, 17 (2020) 217–229.
- R. Barzegar, M.T. Aalami, J. Adamowski, Short-term water
quality variable prediction using a hybrid CNN–LSTM deep
learning model, Stochastic Environ. Res. Risk Assess., 34 (2020)
415–433.
- Z. Li, Y. Hu, Evaluation of the resource-environmental
pressure based on the three-dimensional footprint family
model: a case study on the Pearl River Delta in China,
Environ. Dev. Sustainability, 24 (2022) 6788–6803.
- Y. Chen, H. Lu, J. Li, Y. Qiao, P. Yan, L. Ren, J. Xia, Fairness
analysis and compensation strategy in the Triangle of Central
China driven by water-carbon-ecological footprints, Environ.
Sci. Pollut. Res., 28 (2021) 58502–58522.
- Y.-J. Lee, S.-Y. Lin, Vulnerability and ecological footprint:
a comparison between urban Taipei and rural Yunlin,
Taiwan, Environ. Sci. Pollut. Res., 27 (2020) 34624–34637.
- S. Wang, S. Chen, H. Zhang, Effect of income and energy
efficiency on natural capital demand, Environ. Sci. Pollut. Res.,
28 (2021) 45402–45413.
- Y. Achour, H.R. Pourghasemi, How do machine learning
techniques help in increasing accuracy of landslide susceptibility
maps?, Geosci. Front., 11 (2020) 871–883.
- S. Wang, L. Huang, X. Xu, J. Li, Spatio-temporal variations
in ecological spaces and their ecological carrying status in
China’s mega-urban agglomerations, J. Geogr. Sci., 32 (2022)
1683–1704.
- H. Ke, S. Dai, H. Yu, Effect of green innovation efficiency on
ecological footprint in 283 Chinese Cities from 2008 to 2018,
Environ. Dev. Sustainability, 24 (2022) 2841–2860.
- A.A. Rafindadi, O. Usman, Toward sustainable electricity
consumption in Brazil: the role of economic growth,
globalization and ecological footprint using a nonlinear ARDL
approach, J. Environ. Plann. Manage., 64 (2021) 905–929.
- M.T. Majeed, M. Mazhar, Reexamination of environmental
Kuznets curve for ecological footprint: the role of biocapacity,
human capital, and trade, Pak. J. Commer. Soc. Sci., 14 (2020)
202–254.
- A.A. Alola, T.S. Adebayo, S.T. Onifade, Examining the
dynamics of ecological footprint in China with spectral
Granger causality and quantile-on-quantile approaches,
Int. J. Sustainable Dev. World Ecol., 29 (2022) 263–276.
- M. Usman, N. Hammar, Dynamic relationship between
technological innovations, financial development, renewable
energy, and ecological footprint: fresh insights based on
the STIRPAT model for Asia Pacific Economic Cooperation
countries, Environ. Sci. Pollut. Res., 28 (2021) 15519–15536.
- T. Chen, C. Song, C. Fan, J. Cheng, X. Duan, L. Wang, K. Liu,
S. Deng, Y. Che, A comprehensive data set of physical and
human-dimensional attributes for China’s lake basins,
Sci. Data, 9 (2022) 519,
doi: 10.1038/s41597-022-01649-z.