References

  1. N. Sillero, A. Márcia Barbosa, Common mistakes in ecological niche models, Int. J. Geogr. Inf. Sci., 35 (2021) 213–226.
  2. J. Willard, X. Jia, S. Xu, M. Steinbach, V. Kumar, Integrating scientific knowledge with machine learning for engineering and environmental systems, ACM Comput. Surv., 55 (2022) 1–37, doi: 10.1145/3514228.
  3. C. Li, Y. Zhang, S. Zhang, J. Wang, Applying the Super-EBM model and spatial Durbin model to examining total-factor ecological efficiency from a multi-dimensional perspective: evidence from China, Environ. Sci. Pollut. Res., 29 (2022) 2183–2202.
  4. Q. Guan, Y. Yao, T. Ma, Y. Hong, Y. Bie, J. Lyu, Under the dome: a 3D urban texture model and its relationship with urban land surface temperature, Ann. Am. Assoc. Geogr., 112 (2022) 1369–1389.
  5. K.D. Pearson, G. Nelson, M.F.J. Aronson, P. Bonnet, L. Brenskelle, C.C. Davis, E.G. Denny, E.R. Ellwood, H. Goëau, J. Mason Heberling, A. Joly, T. Lorieul, S.J. Mazer, E.K. Meineke, B.J. Stucky, P. Sweene, Machine learning using digitized herbarium specimens to advance phenological research, BioScience, 70 (2020) 610–620.
  6. M. Pichler, V. Boreux, A.-M. Klein, M. Schleuning, F. Hartig, Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks, Methods Ecol. Evol., 11 (2020) 281–293.
  7. V. Hosu, H. Lin, T. Sziranyi, S. Saupe, KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment, IEEE Trans. Image Process., 29 (2020) 4041–4056.
  8. F. Huang, J. Zhang, C. Zhou, Y. Wang, J. Huang, L. Zhu, A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction, Landslides, 17 (2020) 217–229.
  9. R. Barzegar, M.T. Aalami, J. Adamowski, Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model, Stochastic Environ. Res. Risk Assess., 34 (2020) 415–433.
  10. Z. Li, Y. Hu, Evaluation of the resource-environmental pressure based on the three-dimensional footprint family model: a case study on the Pearl River Delta in China, Environ. Dev. Sustainability, 24 (2022) 6788–6803.
  11. Y. Chen, H. Lu, J. Li, Y. Qiao, P. Yan, L. Ren, J. Xia, Fairness analysis and compensation strategy in the Triangle of Central China driven by water-carbon-ecological footprints, Environ. Sci. Pollut. Res., 28 (2021) 58502–58522.
  12. Y.-J. Lee, S.-Y. Lin, Vulnerability and ecological footprint: a comparison between urban Taipei and rural Yunlin, Taiwan, Environ. Sci. Pollut. Res., 27 (2020) 34624–34637.
  13. S. Wang, S. Chen, H. Zhang, Effect of income and energy efficiency on natural capital demand, Environ. Sci. Pollut. Res., 28 (2021) 45402–45413.
  14. Y. Achour, H.R. Pourghasemi, How do machine learning techniques help in increasing accuracy of landslide susceptibility maps?, Geosci. Front., 11 (2020) 871–883.
  15. S. Wang, L. Huang, X. Xu, J. Li, Spatio-temporal variations in ecological spaces and their ecological carrying status in China’s mega-urban agglomerations, J. Geogr. Sci., 32 (2022) 1683–1704.
  16. H. Ke, S. Dai, H. Yu, Effect of green innovation efficiency on ecological footprint in 283 Chinese Cities from 2008 to 2018, Environ. Dev. Sustainability, 24 (2022) 2841–2860.
  17. A.A. Rafindadi, O. Usman, Toward sustainable electricity consumption in Brazil: the role of economic growth, globalization and ecological footprint using a nonlinear ARDL approach, J. Environ. Plann. Manage., 64 (2021) 905–929.
  18. M.T. Majeed, M. Mazhar, Reexamination of environmental Kuznets curve for ecological footprint: the role of biocapacity, human capital, and trade, Pak. J. Commer. Soc. Sci., 14 (2020) 202–254.
  19. A.A. Alola, T.S. Adebayo, S.T. Onifade, Examining the dynamics of ecological footprint in China with spectral Granger causality and quantile-on-quantile approaches, Int. J. Sustainable Dev. World Ecol., 29 (2022) 263–276.
  20. M. Usman, N. Hammar, Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries, Environ. Sci. Pollut. Res., 28 (2021) 15519–15536.
  21. T. Chen, C. Song, C. Fan, J. Cheng, X. Duan, L. Wang, K. Liu, S. Deng, Y. Che, A comprehensive data set of physical and human-dimensional attributes for China’s lake basins, Sci. Data, 9 (2022) 519,
    doi: 10.1038/s41597-022-01649-z.