References
- H. Salimi, E. Asadi, S. Darbandi, Meteorological and
hydrological drought monitoring using several drought
indices, Appl. Water Sci., 11 (2021) 1–10.
- J. Zhao, C. Li, T. Yang, Y. Tang, Y. Yin, X. Luan, S. Sun, Estimation
of high spatiotemporal resolution actual evapotranspiration
by combining the SWH model with the METRIC model,
J. Hydrol., 586 (2020) 124883, doi: 10.1016/j.jhydrol.2020.124883.
- Z. Chen, Z. Zhu, H. Jiang, S. Sun, Estimating daily reference
evapotranspiration based on limited meteorological data
using deep learning and classical machine learning methods,
J. Hydrol., 591 (2020) 125286, doi: 10.1016/j.jhydrol.2020.125286.
- V. Burchard‐Levine, H. Nieto, D. Riaño, W.P. Kustas,
M. Migliavacca, T.S. El‐Madany, J.A. Nelson, A. Andreu,
A. Carrara, J. Beringer, A remote sensing‐based threesource
energy balance model to improve global estimations
of evapotranspiration
in semi‐arid tree‐grass ecosystems,
Global Change Biol., 28 (2022) 1493–1515.
- M. Tasumi, Estimating evapotranspiration using METRIC
model and Landsat data for better understandings of regional
hydrology in the western Urmia Lake Basin, Agric. Water
Manage., 226 (2019) 105805, doi: 10.1016/j.agwat.2019.105805.
- H.M. Al-Ghobari, Estimation of reference evapotranspiration
for southern region of Saudi Arabia, Agric. For. Meteorol.,
19 (2000) 81–86.
- M. Elhag, Sensitivity analysis assessment of remotely based
vegetation indices to improve water resources management,
Environ. Dev. Sustainability, 16 (2014) 1209–1222.
- T. Govender, T. Dube, C. Shoko, Remote sensing of land useland
cover change and climate variability on hydrological
processes in Sub-Saharan Africa: key scientific strides and
challenges, Geocarto Int., 38 (2022) 1–25.
- M.H. Jahangir, M. Arast, Remote sensing products for
predicting actual evapotranspiration and water stress footprints
under different land cover, J. Cleaner Prod., 266 (2020) 121818,
doi: 10.1016/j.jclepro.2020.121818.
- R.G. Allen, M. Tasumi, R. Trezza, Satellite-based energy
balance for mapping evapotranspiration with internalized
calibration (METRIC)—model, Hydrol. Processes, 133 (2007)
380–394.
- M.C. Anderson, R.G. Allen, A. Morse, W.P. Kustas, Use of
Landsat thermal imagery in monitoring evapotranspiration
and managing water resources, Remote Sens. Environ.,
122 (2012) 50–65.
- R. Allen, A. Irmak, R. Trezza, J.M. Hendrickx, W. Bastiaanssen,
J. Kjaersgaard, Satellite‐based ET estimation in agriculture
using SEBAL and METRIC, Hydrol. Processes, 25 (2011)
4011–4027.
- H. Nouri, M. Faramarzi, B. Sobhani, S. Sadeghi, Estimation of
evapotranspiration
based on Surface Energy Balance Algorithm
for Land (SEBAL) using Landsat 8 and MODIS images,
Appl. Ecol. Environ. Res., 15 (2017) 1971–1982.
- R.G. Allen, C. Morton, B. Kamble, A. Kilic, J. Huntington,
D. Thau, N. Gorelick, T. Erickson, R. Moore, R. Trezza, EEFlux:
A Landsat-Based Evapotranspiration Mapping Tool on the
Google Earth Engine, 2015 ASABE/IA Irrigation Symposium:
Emerging Technologies for Sustainable Irrigation-A Tribute
to the Career of Terry Howell, Sr. Conference Proceedings,
2015, pp. 1–11.
- G.B. Senay, M. Friedrichs, R.K. Singh, N.M. Velpuri, Evaluating
Landsat 8 evapotranspiration for water use mapping in the
Colorado River Basin, Remote Sens. Environ., 185 (2016)
171–185.
- N. Bhattarai, L.J. Quackenbush, J. Im, S.B. Shaw, A new
optimized algorithm for automating endmember pixel selection
in the SEBAL and METRIC models, Remote Sens. Environ.,
196 (2017) 178–192.
- J.M. Ramírez-Cuesta, R.G. Allen, D.S. Intrigliolo, A. Kilic,
C. Robison, R. Trezza, C. Santos, I.J. Lorite, METRIC-GIS:
an advanced energy balance model for computing crop
evapotranspiration in a GIS environment, Environ. Modell.
Software, 131 (2020) 104770, doi: 10.1016/j.envsoft.2020.104770.
- D. Guo, S. Westra, H.R. Maier, An R package for modelling
actual, potential and reference evapotranspiration, Environ.
Modell. Software, 78 (2016) 216–224.
- G.F. Olmedo, S. Ortega Farias, D. Fonseca Luengo, F. Fuentes
Peñailillo, Water: tools and functions to estimate actual
evapotranspiración using Land Surface Energy Balance Models
in R, The R J., 2 (2016) 352–369.
- L.B. Ferreira, F.F. da Cunha, Multi-step ahead forecasting
of daily reference evapotranspiration using deep learning,
Comput. Electron. Agric., 178 (2020) 105728, doi: 10.1016/j.
compag.2020.105728.
- M. He, J.S. Kimball, Y. Yi, S.W. Running, K. Guan, A. Moreno,
X. Wu, M. Maneta, Satellite data-driven modeling of field scale
evapotranspiration in croplands using the MOD16 algorithm
framework, Remote Sens. Environ., 230 (2019) 111201,
doi: 10.1016/j.rse.2019.05.020.
- Z. Su, The Surface Energy Balance System (SEBS) for estimation
of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6 (2002)
85–100.
- R.K. Singh, A. Irmak, S. Irmak, D.L. Martin, Application of
SEBAL model for mapping evapotranspiration and estimating
surface energy fluxes in south-central Nebraska, J. Irrig. Drain.
Eng., 134 (2008) 273–285.
- W. Bastiaanssen, B. Thoreson, B. Clark, G. Davids, Discussion
of “Application of SEBAL model for mapping evapotranspiration
and estimating surface energy fluxes in south-central
Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and
Derrel L. Martin, J. Irrig. Drain. Eng., 136 (2010) 282–283.
- F. Mohammed, A. Elfeki, M. Elhag, A. Chaabani, A comparative
study of the estimation methods for NRCS curve number of
natural arid basins and the impact on flash flood predications,
Arabian J. Geosci., 14 (2021) 1–23.
- A. Irmak, R.G. Allen, J. Kjaersgaard, J. Huntington, B. Kamble,
R. Trezza, I. Ratcliffe, Operational remote sensing of ET and
challenges, Remote Sens. Environ., (2012) 467–492.
- M. Elhag, Inconsistencies of SEBS model output based on the
model inputs: global sensitivity contemplations, J. Indian Soc.
Remote Sens., 44 (2016) 435–442.
- S. Hussain, A.M. Elfeki, A. Chaabani, E.A. Yibrie, M. Elhag,
Spatio-temporal evaluation of remote sensing rainfall data
of TRMM satellite over the Kingdom of Saudi Arabia, Theor.
Appl. Climatol., 150 (2022) 363–377.
- W. Senkondo, S.E. Munishi, M. Tumbo, J. Nobert,
S.W. Lyon, Comparing remotely-sensed surface energy balance
evapotranspiration estimates in heterogeneous and datalimited
regions: a case study of Tanzania’s Kilombero Valley,
Remote Sens., 11 (2019) 1289, doi: 10.3390/rs11111289.
- S. Ortega, Evaluation of the METRIC Model for Mapping
Energy Balance Components and Actual Evapotranspiration
for a Super-Intensive Drip-Irrigated Olive Orchard,
Dissertations & Theses in Natural Resources, 2019, p. 296.
- B. Jarbou, A. Alqarawy, A. Chabaani, A. Elfeki, M. Elhag,
Spatiotemporal analysis of the annual rainfall in the Kingdom
of Saudi Arabia: predictions to 2030 with different confidence
levels, Theor. Appl. Climatol., 146 (2021) 1479–1499.
- S. Islam, R.A. Khan, M. Ahmad, M. Al Qahtani, Computation
of potential evapo-transpiration under different climatic
condition, Kingdom of Saudi Arabia, Int. J. Eng. Assoc., 4 (2015)
107–111.
- A.M. Youssef, S.A. Sefry, B. Pradhan, E.A. Alfadail, Analysis on
causes of flash flood in Jeddah city (Kingdom of Saudi Arabia)
of 2009 and 2011 using multi-sensor remote sensing data
and GIS, Geomatics Nat. Hazards Risk, 7 (2016) 1018–1042.
- F.M. Al Zawad, A. Aksakal, Impacts of Climate Change on
Water Resources in Saudi Arabia, The 3rd International
Conference on Water Resources and Arid Environments
(2008) and the 1st Arab Water Forum, 2010, pp. 511–523.
- M. Elhag, J. Bahrawi, S. Boteva, Input/output inconsistencies of
daily evapotranspiration conducted empirically using remote
sensing data in arid environments, Open Geosci., 13 (2021)
321–334.
- J. Steiner, T. Howell, A. Schneider, Lysimetric evaluation of
daily potential evapotranspiration models for grain sorghum,
Agron. J., 83 (1991) 240–247.
- R.K. Singh, S. Islam, R.A. Khan, M. Danish, Analysis of potential
evapotranspiration of different cities of Kingdom of Saudi
Arabia, J. Artif. Intell. Res., 5 (2015) 48–51.
- M. Elhag, A. Psilovikos, I. Manakos, K. Perakis, Application
of the SEBS water balance model in estimating daily
evapotranspiration and evaporative fraction from remote
sensing data over the Nile Delta, Water Resour. Manage.,
25 (2011) 2731–2742.
- S. Hussain, J. Bahrawi, M. Awais, M. Elhag, Understanding
the role of the radiometric indices in temporal evapotranspiration
estimation in arid environments, Desal. Water Treat.,
256 (2022) 221–234.
- H. Nouri, S. Beecham, F. Kazemi, A. Hassanli, S. Anderson,
Remote sensing techniques for predicting evapotranspiration
from mixed vegetated surfaces, Hydrol. Earth Syst. Sci.
Discuss., 10 (2013) 3897–3925.
- S. Chowdhury, M. Al-Zahrani, Implications of climate change
on water resources in Saudi Arabia, Arabian J. Sci. Eng.,
38 (2013) 1959–1971.
- L.B. Ferreira, F.F. da Cunha, R.A. de Oliveira, E.I. Fernandes
Filho, Estimation of reference evapotranspiration in Brazil
with limited meteorological data using ANN and SVM–a
new approach, J. Hydrol., 572 (2019) 556–570.
- U. Avdan, G. Jovanovska, Algorithm for automated mapping
of land surface temperature using Landsat 8 satellite data,
J. Sens., 2016 (2016) 1–8.
- B. Kumari, M. Tayyab, J. Mallick, M.F. Khan, A. Rahman,
Satellite-driven land surface temperature (LST) using Landsat
5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its
association with built-up and green cover over urban Delhi,
India, Remote Sens., 1 (2018) 63–78.
- G. Roerink, Z. Su, M. Menenti, S-SEBI: a simple remote sensing
algorithm to estimate the surface energy balance, Phys. Chem.
Earth Part B, 25 (2000) 147–157.
- J.G. Liu, P.J. Mason, Image Processing and GIS for Remote
Sensing: Techniques and Applications, John Wiley & Sons, 2016.
- H. Oguz, LST calculator: a program for retrieving land surface
temperature from Landsat TM/ETM+ imagery, Environ. Eng.
Manage. J., 12 (2013) 549–555.
- A. Rajeshwari, N. Mani, Estimation of land surface temperature
of Dindigul district using Landsat 8 data, Int. J. Eng. Res.
Technol., 3 (2014) 122–126.
- N.P. Siddique, A. Ghaffar, Spatial and temporal relationship
between NDVI and land surface temperature of Faisalabad
city from 2000–2015, Eur. Online J. Nat. Soc., 8 (2019) 55–64.
- C.L. de Almeida, T.R.A. de Carvalho, J.C. de Araújo, Leaf
area index of Caatinga biome and its relationship with
hydrological and spectral variables, Agric. For. Meteorol.,
279 (2019) 107705, doi: 10.1016/j.agrformet.2019.107705.
- J. Wang, T.W. Sammis, A.A. Andales, L.J. Simmons,
V.P. Gutschick, D.R. Miller, Crop coefficients of open-canopy
pecan orchards, Agric. Water Manage., 88 (2007) 253–262.
- H. Nouri, M. Faramarzi, B. Sobhani, S. Sadeghi, Estimation of
evapotranspiration based on surface energy balance algorithm
for land (SEBAL) using Landsat 8 and MODIS images,
Appl. Ecol. Environ. Res., 15 (2017) 1971–1982.
- E. Nuaman, M. Elhag, J. Bahrawi, L. Zhang, H.F. Gabriel,
K. Ur Rahman, Soil erosion modelling and accumulation
using RUSLE and remote sensing techniques: case study Wadi
Baysh, Kingdom of Saudi Arabia, Sustainability, 15 (2023)
3218–3232.
- M. Taheri, M. Gholizadeh, M. Nasseri, B. Zahraie, H. Poorsepahy-
Samian, V. Espanmanesh, Performance evaluation of various
evapotranspiration modeling scenarios based on METRIC
method and climatic indexes, Environ. Monit. Assess.,
193 (2021) 1–18.
- C.M. Frey, E. Parlow, R. Vogt, M. Harhash, M.M. Abdel Wahab,
Flux measurements in Cairo. Part 1: in situ measurements
and their applicability for comparison with satellite data,
Int. J. Climatol., 31 (2011) 218–231.
- M. Elhag, J.A. Bahrawi, Realization of daily evapotranspiration
in arid ecosystems based on remote sensing techniques,
Geosci. Instrum. Methods Data Syst., 6 (2017) 141–147.
- M. Elhag, I. Gitas, A. Othman, J. Bahrawi, A. Psilovikos,
N. Al-Amri, Time series analysis of remotely sensed water
quality parameters in arid environments, Saudi Arabia,
Environ. Dev. Sustainability, 23 (2021) 1392–1410.
- A.Y. Aldhebiani, M. Elhag, A.K. Hegazy, H.K. Galal,
N.S. Mufareh, Consideration of NDVI thematic changes in
density analysis and floristic composition of Wadi Yalamlam,
Saudi Arabia, Geosci. Instrum. Methods Data Syst., 7 (2018)
297–306.
- A. Psilovikos, M. Elhag, Forecasting of remotely sensed
daily evapotranspiration data over Nile Delta region, Egypt,
Water Resour. Manage., 27 (2013) 4115–4130.