References

  1. H. Ding, L. Tang, Y. Nie, H. Ji, Characteristics and interactions of heavy metals with humic acid in gold mining area soil at a upstream of a metropolitan drinking water source, J. Geochem. Explor., 200 (2019) 266–275.
  2. M.M. Manyuchi, N. Sukdeo, W. Stinner, T.N. Mutusva, Influence of sawdust based biochar on gold tailings wastewater heavy metal contaminants removal, S. Afr. J. Chem. Eng., 37 (2021) 81–91.
  3. L.D. Senanu, G. Kranjac-Berisavljevic, S.J. Cobbina, The use of local materials to remove heavy metals for householdscale drinking water treatment: a review, Environ. Technol. Innovation, 29 (2023) 103005, doi: 10.1016/j.eti.2023.103005.
  4. X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, Z. Li, Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS, J. Anal. Appl. Pyrolysis, 102 (2013) 16–23.
  5. G. Lin, T. Hu, S. Wang, T. Xie, L. Zhang, S. Cheng, L. Fu, C. Xiong, Selective removal behavior and mechanism of trace Hg(II) using modified corn husk leaves, Chemosphere, 225 (2019) 65–72.
  6. U. Tyagi, Enhanced adsorption of metal ions onto Vetiveria zizanioides biochar via batch and fixed bed studies, Bioresour. Technol., 345 (2022) 126475, doi: 10.1016/j.biortech.2021.126475.
  7. Z. Wang, J. Xu, D. Yellezuome, R. Liu, Effects of cotton strawderived biochar under different pyrolysis conditions on Pb(II) adsorption properties in aqueous solutions, J. Anal. Appl. Pyrolysis, 157 (2021) 105214, doi: 10.1016/j.jaap.2021.105214.
  8. J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. da Cunha, N.F. Cardoso, J.L. Brasil, S.L.P. Dias, Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions, J. Hazard. Mater., 162 (2009) 270–280.
  9. A. Üçer, A. Uyanik, S.F. Aygün, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47 (2006) 113–118.
  10. S. Thongkaew, C. Jatuporn, P. Sukprasert, P. Rueangrit, S. Tongchure, Factors affecting the durian production of farmers in the eastern region of Thailand, Int. J. Agric. Ext., 9 (2021) 285–293.
  11. J.E. Amonette, Letter Report for Characterization of Biochar, Pacific Northwest National Lab., Richland, Washington, 2013.
  12. S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon, 48 (2010) 1252–1261.
  13. W.G. Whitman, Corrosion of iron, Chem. Rev., 2 (1926) 419–435.
  14. M.D. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76–77 (1998) 137–152.
  15. J.H. Windeatt, A.B. Ross., P.T. Williams, P.M. Forster, M.A. Nahil, S. Singh, Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment, J. Environ. Manage., 146 (2014) 189–197.
  16. X. Xiao, Z. Chen, B. Chen, H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials, Sci. Rep., 4 (2015) 22644, doi: 10.1038/srep22644.
  17. M. Stylianou, A. Christou, P. Dalias, P. Polycarpou, C. Michael, A. Agapiou, P. Papanastasiou, D. Fatta-Kassinos, Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds, J. Energy Inst., 93 (2020) 2063–2073.
  18. C.P. Yi, S.R. Majid, The Electrochemical Performance of Deposited Manganese Oxide-Based Film as Electrode Material for Electrochemical Capacitor Application, R. Inguanta, C. Sunseri, Eds., Semiconductors – Growth and Characterization, InTechOpen, 2018, pp. 133–158.
  19. J.E. van Benschoten, W. Lin, W.R. Knocke, Kinetic modeling of manganese(II) oxidation by chlorine dioxide and potassium permanganate, Environ. Sci. Technol., 26 (1992) 1327–1333.
  20. H.-H. Huang, The Eh-pH diagram and its advances, Metals, 6 (2016) 23, doi: 10.3390/met6010023.
  21. A. bin Jusoh, W.H. Cheng, W.M. Low, A. Nora’aini, M.J.M.M. Noor, Study on the removal of iron and manganese in groundwater by granular activated carbon, Desalination, 182 (2005) 347–353.
  22. J.Q. Jiang, C. Cooper, S. Ouki, Comparison of modified montmorillonite adsorbents Part I: preparation, characterization and phenol adsorption, Chemosphere, 47 (2002) 711–716.
  23. R.S. Bai, T.E. Abraham, Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass, Bioresour. Technol., 87 (2003) 17–26.
  24. A. Ali, Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent, Environ. Nanotechnol. Monit. Manage., 7 (2017) 57–63.
  25. N. Rajic, D. Stojakovic, S. Jevtic, N.Z. Logar, J. Kovac, V. Kaucic, Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia, J. Hazard. Mater., 172 (2009) 1450–1457.
  26. A.R. Sarkar, P.K. Datta, M. Sarkar, Sorption recovery of metal ions using silica gel modified with salicylaldoxime, Talanta, 43 (1996) 1857–1862.
  27. A.L. Johnson, F.H. Norton, Fundamental study of clay: II, mechanism of deflocculation in the clay-water system, J. Am. Ceram. Soc., 24 (1941) 189–203.
  28. J. McLean, B. Bledsoe, Behavior of Metals in Soils, U.S. Environmental Protection Agency, Washington, D.C., EPA/540/S-92/018 (NTIS PB93131480), 1992.