References

  1. R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A.P. Tiwari, H.Y. Kim, M.K. Joshi, Technological trends in heavy metals removal from industrial wastewater: a review, J. Environ. Chem. Eng., 9 (2021) 105688, doi: 10.1016/j.jece.2021.105688.
  2. S. Krishnan, N.S. Zulkapli, H. Kamyab, S.M. Taib, M.F.B. Md Din, Z.A. Majid, S. Chaiprapat, I. Kenzo, Y. Ichikawa, M. Nasrullah, S. Chelliapan, N. Othman, Current technologies for recovery of metals from industrial wastes: an overview, Environ. Technol. Innovation, 22 (2021) 101525, doi: 10.1016/j.eti.2021.101525.
  3. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  4. H.M. Zwain, M. Vakili, I. Dahlan, Waste material adsorbents for zinc removal from wastewater:
    a comprehensive review, Int. J. Chem. Eng., 2014 (2014) 347912, doi: 10.1155/2014/347912.
  5. U.U. Jadhav, H. Hocheng, A review of recovery of metals from industrial waste Industrial management and organisation, J. Achiev. Mater. Manuf. Eng., 54 (2012) 159–167.
  6. E. Kavitha, R. Kedia, N. Babaria, S. Prabhakar, M.P. Rajesh, Optimization of process using carboxymethyl chitosan for the removal of mixed heavy metals from aqueous streams, Int. J. Biol. Macromol., 149 (2020) 404–416.
  7. K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives, J. Mol. Liq., 290 (2019) 111197, doi: 10.1016/j.molliq.2019.111197.
  8. C. Gakwisiri, N. Raut, A. Al-Saadi, S. Al-Aisri, A. Al-Ajmi, A critical review of removal of zinc from wastewater, Lect. Notes Comput. Sci., 2197 (2012) 627–630.
  9. K. Singh, N.A. Renu, M. Agarwal, Methodologies for removal of heavy metal ions from wastewater: an overview, Interdiscip. Environ. Rev., 18 (2017) 124–142.
  10. V. Sodha, S. Shahabuddin, R. Gaur, I. Ahmad, R. Bandyopadhyay, N. Sridewi, Comprehensive review on
    zeolite-based nanocomposites for treatment of effluents from wastewater, Nanomaterials, 12 (2022) 3199, doi: 10.3390/nano12183199.
  11. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters:
    a review, ChemBioEng Rev., 4 (2017) 37–59.
  12. E. Kavitha, S. Prabhakar, Review and assessment on the separation of cesium and strontium from the aqueous stream, Desal. Water Treat., 251 (2022) 43–56.
  13. A. Pohl, Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents, Water Air Soil Pollut., 231 (2020) 503, doi: 10.1007/s11270-020-04863-w.
  14. A. Reyes-Serrano, J.E. López-Alejo, M.A. Hernández-Cortázar, I. Elizalde, Removing contaminants from tannery wastewater by chemical precipitation using CaO and Ca(OH)2, Chin. J. Chem. Eng., 28 (2020) 1107–1111.
  15. Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 26 (2018) 289–300.
  16. K.A. Baltpurvins, R.C. Burns, G.A. Lawrance, A.D. Stuart, Effect of electrolyte composition on zinc hydroxide precipitation by lime, Water Res., 31 (1997) 973–980.
  17. E. Sayilgan, T. Kukrer, N.O. Yigit, G. Civelekoglu, M. Kitis, Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants, J. Hazard. Mater., 173 (2010) 137–143.
  18. E. Zhang, K. Zhou, X. Zhang, Y. Wu, J. Liu, W. Chen, C. Peng, Selective separation of copper and zinc from high acid leaching solution of copper dust using a sulfide precipitation-pickling approach, Process Saf. Environ. Prot., 156 (2021) 100–108.
  19. C.L. Quintanilha, J.C. Afonso, C.A. Vianna, V. Gante, J.L. Mantovano, Recovery of manganese and zinc via sequential precipitation from spent zinc–MnO2 dry cells after fusion with potassium hydrogenosulfate, J. Power Sources, 248 (2014) 596–603.
  20. M. Aghazadeh-Ghomi, J. Moghaddam, N.P. Ahmadi, Enhanced selectivity of hydrolytic precipitation of Zn from Zn-Ni sulfate solution via chelation of Ni, Trans. Nonferrous Met. Soc. China, 28 (2018) 2566–2573.
  21. P. Ghosh, A.N. Samanta, S. Ray, Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro- Fenton treatment and chemical precipitation, Desalination, 266 (2011) 213–217.
  22. M.S. Oncel, A. Muhcu, E. Demirbas, M. Kobya, A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater, J. Environ. Chem. Eng., 1 (2013) 989–995.
  23. K. Shah, K. Gupta, B. Sengupta, Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping, J. Environ. Chem. Eng., 5 (2017) 5260–5269.
  24. F.M. Pang, P. Kumar, T.T. Teng, A.K. Mohd Omar, K.L. Wasewar, Removal of lead, zinc and iron by coagulation-flocculation, J. Taiwan Inst. Chem. Eng., 42 (2011) 809–815.
  25. O. Amuda, I. Amoo, K. Ipinmoroti, O. Ajayi, Coagulation/flocculation process in the removal of trace metals present in industrial wastewater, J. Appl. Sci. Environ. Manage., 10 (2006) 1–4.
  26. X. Xiao, Y. Sun, J. Liu, H. Zheng, Flocculation of heavy metal by functionalized starch-based bioflocculants: characterization and process evaluation, Sep. Purif. Technol., 267 (2021) 118628, doi: 10.1016/j.seppur.2021.118628.
  27. N.P. Hankins, N. Lu, N. Hilal, Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation, Sep. Purif. Technol., 51 (2006) 48–56.
  28. N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4 (2021) 36, doi: 10.1038/ s41545-021-00127-0.
  29. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia., 50 (2014) 113–120.
  30. İ. Demiral, C. Samdan, H. Demiral, Enrichment of the surface functional groups of activated carbon by modification method, Surf. Interfaces, 22 (2021) 100873, doi: 10.1016/j.surfin.2020.100873.
  31. U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel, K.L. Anitha, Recent advances in heavy metal removal by chitosan based adsorbents, Carbohydr. Polym., 251 (2021) 117000, doi: 10.1016/j. carbpol.2020.117000.
  32. W.S.W. Ngah, S. Fatinathan, Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads, Chem. Eng. J., 143 (2008) 62–72.
  33. F. Gao, L. Wang, J. Wang, H. Zhang, S. Lin, Nutrient recovery from treated wastewater by a hybrid electrochemical sequence integrating bipolar membrane electrodialysis and membrane capacitive deionization, Environ. Sci. Water Res. Technol., 6 (2020) 383–391.
  34. Y. Zhang, Y. Chen, W. Kang, H. Han, H. Song, C. Zhang, H. Wang, X. Yang, X. Gong, C. Zhai, J. Deng, L. Ai, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Cleaner Prod., 258 (2020) 120736, doi: 10.1016/j.jclepro.2020.120736.
  35. Y. Li, L. Li, J. Yu, Applications of zeolites in sustainable chemistry, Chem, 3 (2017) 928–949.
  36. T. Zhang, W. Wang, Y. Zhao, H. Bai, T. Wen, S. Kang, G. Song, S. Song, S. Komarneni, Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nanocomposites, Chem. Eng. J., 420 (2021) 127574, doi: 10.1016/j.cej.2020.127574.
  37. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211–212 (2012) 317–331.
  38. Z. Mo, D. Tai, H. Zhang, A. Shahab, A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water, Chem. Eng. J., 443 (2022) 136320, doi: 10.1016/j.cej.2022.136320.
  39. Z. Ren, E. Kim, S.W. Pattinson, K.S. Subrahmanyam, C.N.R. Rao, A.K. Cheetham, D. Eder, Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties, Chem. Sci., 3 (2012) 209–216.
  40. H. Li, F. Zheng, J. Wang, J. Zhou, X. Huang, L. Chen, P. Hu, J. Gao, Q. Zhen, S. Bashir, J.L. Liu, Facile preparation of zeoliteactivated carbon composite from coal gangue with enhanced adsorption performance, Chem. Eng. J., 390 (2020) 124513, doi: 10.1016/j.cej.2020.124513.
  41. R. Panek, M. Medykowska, M. Wiśniewska, K. Szewczuk- Karpisz, K. Jędruchniewicz, M. Franus, Simultaneous removal of Pb2+ and Zn2+ heavy metals using fly ash Na-X zeolite and its carbon Na-X(C) composite, Materials (Basel, Switzerland), 14 (2021) 2832, doi: 10.3390/ma14112832.
  42. S.F. Anis, R. Hashaikeh, N. Hilal, Microfiltration membrane processes: a review of research trends over the past decade, J. Water Process Eng., 32 (2019) 100941, doi: 10.1016/j.jwpe.2019.100941.
  43. C. Rouquié, L. Dahdouh, J. Ricci, C. Wisniewski, M. Delalonde, Immersed membranes configuration for the microfiltration of fruit-based suspensions, Sep. Purif. Technol., 216 (2019) 25–33.
  44. S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment technologies and future trends: a comprehensive review, Desalination, 452 (2019) 159–195.
  45. P. Saini, V.K. Bulasara, A.S. Reddy, Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment, Chem. Eng. Commun., 206 (2019) 227–236.
  46. K. Trivunac, Z. Sekulić, S. Stevanović, Zinc removal from wastewater by a complexation-microfiltration process, J. Serbian Chem. Soc., 77 (2012) 1661–1670.
  47. Z. Sekulić, D. Antanasijević, S. Stevanović, K. Trivunac, Application of artificial neural networks for estimating Cd, Zn, Pb removal efficiency from wastewater using complexationmicrofiltration process, Int. J. Environ. Sci. Technol., 14 (2017) 1383–1396.
  48. T. Erwe, V. Mavrov, H. Chmiel, Characterization of a synthetic zeolite P as a heavy metal bonding agent, Chem. Pap., 57 (2003) 45–49.
  49. G. Crini, N. Morin-Crini, N. Fatin-Rouge, S. Déon, P. Fievet, Metal removal from aqueous media
    by polymer-assisted ultrafiltration with chitosan, Arabian J. Chem., 10 (2017) S3826–S3839.
  50. E. Kavitha, A. Sowmya, S. Prabhakar, P. Jain, R. Surya, M.P. Rajesh, Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling, Int. J. Biol. Macromol., 132 (2019) 278–288.
  51. S. Chakraborty, J. Dasgupta, U. Farooq, J. Sikder, E. Drioli, S. Curcio, Experimental analysis, modeling and optimization of chromium(VI) removal from aqueous solutions by polymer-enhanced ultrafiltration, J. Membr. Sci., 456 (2014) 139–154.
  52. J. Sánchez, C. Espinosa, F. Pooch, H. Tenhu, G. del C. Pizarro, D.P. Oyarzún, Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium(VI) through polymer-enhanced ultrafiltration technique, React. Funct. Polym., 127 (2018) 67–73.
  53. E. Kavitha, M.P. Rajesh, S. Prabhakar, Removal and recovery of heavy metals from aqueous solution using b-cyclodextrin polymer and optimization of complexation conditions, Desal. Water Treat., 122 (2018), 219–230.
  54. N.H. Baharuddin, N.M.N. Sulaiman, M.K. Aroua, M.G.M. Nawawi, M.A. Kassim, M.R. Othman, I. Dahlan, Starch as novel water soluble biopolymer in removal mixtures heavy metal ions via polymer enhanced ultrafiltration, AIP Conf. Proc., 2124 (2019) 030012, doi: 10.1063/1.5117134.
  55. Y. Manawi, G. McKay, N. Ismail, A. Kayvani Fard, V. Kochkodan, M.A. Atieh, Enhancing lead removal from water by complexassisted filtration with acacia gum, Chem. Eng. J., 352 (2018) 828–836.
  56. Y. Huang, J.R. Du, Y. Zhang, D. Lawless, X. Feng, Removal of mercury(II) from wastewater by polyvinylamine-enhanced ultrafiltration, Sep. Purif. Technol., 154 (2015) 1–10.
  57. V. Innocenzi, M. Prisciandaro, F. Tortora, G. Mazziotti di Celso, F. Veglio, Treatment of WEEE industrial wastewaters: removal of yttrium and zinc by means of micellar enhanced ultra filtration, Waste Manage., 74 (2018) 393–403.
  58. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, Mu. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  59. C. Mehenktaş, Ö. Arar, Removal of zinc (Zn2+) through biopolymer-enhanced ultrafiltration, J. Polym. Environ., 31 (2023) 1373–1382.
  60. Z.F. Pan, L. An, Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes, Inamuddin,
    M. Ahamed, A. Asiri, Eds., Applications of Ion Exchange Materials in the Environment, Springer, Cham, 2019, pp. 25–46. Available at https://doi.org/10.1007/978-3-030-10430-6_2
  61. E. Wallace, J. Cuhorka, P. Mikulášek, Characterization of nanofiltration membrane and its practical use for separation of zinc from wastewater, Waste Forum., 3 (2018) 314–325.
  62. V. Kočanová, J. Cuhorka, L. Dušek, P. Mikulášek, Application of nanofiltration for removal of zinc from industrial wastewater, Desal. Water Treat., 75 (2017) 342–347.
  63. A.K. Shukla, J. Alam, M. Alhoshan, L.A. Dass, F.A. Ahmed Ali, M.R. Muthumareeswaran, U. Mishra, M.A. Ansari, Removal of heavy metal ions using a carboxylated graphene oxideincorporated polyphenylsulfone nanofiltration membrane, Environ. Sci. Water Res. Technol., 4 (2018) 438–448.
  64. G. Moradi, S. Zinadini, L. Rajabi, Development of the tetrathioterephthalate filler incorporated PES nanofiltration membrane with efficient heavy metal ions rejection and superior antifouling properties, J. Environ. Chem. Eng., 8 (2020) 104431, doi: 10.1016/j.jece.2020.104431.
  65. I.G. Wenten, Khoiruddin, Reverse osmosis applications: prospect and challenges, Desalination, 391 (2016) 112–125.
  66. A.H. Algureiri, Y.R. Abdulmajeed, Removal of heavy metals from industrial wastewater by using RO membrane, Iraqi J. Chem. Pet. Eng., 17 (2016) 125–136.
  67. U. Ipek, Removal of Ni(II) and Zn(II) from an aqueous solutionby reverse osmosis, Desalination, 174 (2005) 161–169.
  68. S. Chung, S. Kim, J.O. Kim, J. Chung, Feasibility of combining reverse osmosis-ferrite process for reclamation of metal plating wastewater and recovery of heavy metals, Ind. Eng. Chem. Res., 53 (2014) 15192–15199.
  69. K.H. Choi, T.Y. Jeoung, Removal of zinc ions in wastewater by electrodialysis, Korean J. Chem. Eng., 19 (2002) 107–113.
  70. M. Boucher, N. Turcotte, V. Guillemette, G. Lantagne, A. Chapotot, G. Pourcelly, R. Sandeaux, C. Gavach, Recovery of spent acid by electrodialysis in the zinc hydrometallurgy industry: performance study of different cation-exchange membranes, Hydrometallurgy, 45 (1997) 137–160.
  71. D.C. Buzzi, L.S. Viegas, M.A.S. Rodrigues, A.M. Bernardes, J.A.S. Tenório, Water recovery from acid mine drainage by electrodialysis, Miner. Eng., 40 (2013) 82–89.
  72. M. Reig, X. Vecino, C. Valderrama, O. Gibert, J.L. Cortina, Application of selectrodialysis for the removal of As from metallurgical process waters: recovery of Cu and Zn, Sep. Purif. Technol., 195 (2018) 404–412.
  73. M. El Batouti, N.F. Al-Harby, M.M. Elewa, A review on promising membrane technology approaches for heavy metal removal from water and wastewater to solve water crisis, Water (Switzerland), 13 (2021) 3241, doi: 10.3390/w13223241.
  74. M. Ghorbanpour, A. Varma, Eds., Medicinal Plants and Environmental Challenges, Springer, Cham, 2017, pp. 1–413.
  75. M.C. Benalia, L. Youcef, M.G. Bouaziz, S. Achour, H. Menasra, Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization, Arabian J. Sci. Eng., 47 (2022) 5587–5599.
  76. M.S. Oncel, A. Muhcu, E. Demirbas, M. Kobya, A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater, J. Environ. Chem. Eng., 1 (2013) 989–995.
  77. A.J. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino, G. Dotro, E. Cartmell, P. Campo, Impacts of coagulationflocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater,Water Res., 128 (2018) 120–128.
  78. S.M. Kanawade, R.W. Gaikwad, Removal of zinc ions from industrial effluent by using cork powder as adsorbent, Int. J. Chem. Eng. Appl., 2 (2011) 199–201.
  79. S. Çoruh, The removal of zinc ions by natural and conditioned clinoptilolites, Desalination, 225 (2008) 41–57.
  80. H.K. Lim, T.T. Teng, M.H. Ibrahim, A. Ahmad, H.T. Chee, Adsorption and removal of zinc(II) from aqueous solution using powdered fish bones, APCBEE Procedia, 1 (2012) 96–102.
  81. A.J. Omotayo, Production of Activated Carbon From Oil Palm Empty Fruit Bunches for Removal of Cadmium, Thesis, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, Selangor, 2010.
  82. V.K. Gupta, S. Sharma, Removal of zinc from aqueous solutions using bagasse fly ash - a low cost adsorbent, Ind. Eng. Chem. Res., 42 (2003) 6619–6624.
  83. L.D. Hafshejani, S.B. Nasab, R.M. Gholami, M. Moradzadeh, Z. Izadpanah, S.B. Hafshejani, A. Bhatnagar, Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent, J. Mol. Liq., 211 (2015) 448–456.
  84. M. Larakeb, L. Youcef, S. Achour, Removal of zinc from water by adsorpion on bentonite and kaolin, Athens J. Sci., 4 (2017) 47–58.
  85. E. Nassef, Y. Eltaweel, Removal of zinc from aqueous solution using activated oil shale, J. Chem., 2019 (2019) 4261210, doi: 10.1155/2019/4261210.
  86. Y. Prasanna Kumar, P. King, V.S.R.K. Prasad, Adsorption of zinc from aqueous solution using marine green algae-Ulva fasciata sp., Chem. Eng. J., 129 (2007) 161–166.
  87. M. Emadi, E. Shams, M.K. Amini, Removal of zinc from aqueous solutions by magnetite silica core-shell nanoparticles, J. Chem., 2013 (2013) 787682, doi: 10.1155/2013/787682.
  88. E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes (Basel), 10 (2020).
  89. G. Borbely, E. Nagy, Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater, Desalination, 240 (2009) 218–226.
  90. J. Huang, F. Yuan, G. Zeng, X. Li, Y. Gu, L. Shi, W. Liu, Y. Shi, Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration, Chemosphere, 173 (2017) 199–206.
  91. S.H. Lee, S. Shrestha, Application of micellar enhanced ultrafiltration (MEUF) process for zinc(II) removal in synthetic wastewater: kinetics and two-parameter isotherm models, Int. Biodeterior. Biodegrad., 95 (2014) 241–250.
  92. N.H. Baharuddin, N.M.N. Sulaiman, M.K. Aroua, M.G.M. Nawawi, M.A. Kassim, M.R. Othman, I. Dahlan, Starch as novel water soluble biopolymer in removal mixtures heavy metal ions via polymer enhanced ultrafiltration, AIP Conf. Proc., 2124 (2019) 030012, doi: 10.1063/1.5117134.
  93. S. Tang, Y. Qiu, Removal of Zn(II) by complexation-ultrafiltration using rotating disk membrane and the shear stability of PAA-Zn complex, Korean J. Chem. Eng., 35 (2018) 2078–2085.
  94. N.H. Baharuddin, N.M.N. Sulaiman, M.K. Aroua, Removal of zinc and lead ions by polymer-enhanced ultrafiltration using unmodified starch as novel binding polymer, Int. J. Environ. Sci. Technol., 12 (2015) 1825–1834.
  95. E. Kavitha, M.P. Rajesh, S. Prabhakar, A. Sowmya, M.A. Raqeeb, S. Sriram, P. Jain, Size enhanced ultrafiltration: a novel hybrid membrane process for the removal and recovery of heavy metal contaminants, Res. J. Pharm. Biol. Chem. Sci., 8 (2017) 191–200.
  96. J.-M. Arana Juve, F.M.S. Christensen, Y. Wang, Z. Wei, Electrodialysis for metal removal and recovery: a review, Chem. Eng. J., 435 (2022) 134857, doi: 10.1016/j.cej.2022.134857.