References
- V. Sagan, K.T. Peterson, M. Maimaitijiang, P. Sidike, J. Sloan,
B.A. Greeling, S. Maalouf, C. Adams, Monitoring inland
water quality using remote sensing: potential and limitations
of spectral indices, bio-optical simulations, machine learning,
and cloud computing, Earth-Sci. Rev., 205 (2020) 103187,
doi: 10.1016/j.earscirev.2020.103187.
- Z. Yang, X. Lu, Y. Wu, P. Miao, J. Zhou, Retrieval and
model construction of water quantity parameters for UAV
hyperspectral remote sensing, Sci. Survey. Mapp., 45 (2020)
60–64.
- B. Bansod, R. Singh, R. Thakur, Analysis of water quality
parameters by hyperspectral imaging in Ganges River,
Spat. Inf. Res., 26 (2018) 203–211.
- Y. Tian, H. Huang, G. Zhou, Q. Zhang, J. Tao, Y. Zhang, J. Lin,
Aboveground mangrove biomass estimation in Beibu Gulf
using machine learning and UAV remote sensing, Sci. Total
Environ., 781 (2021) 1–18.
- M. Gholizadeh, A. Melesse, L. Reddi, A comprehensive review
on water quality parameters estimation using remote sensing
techniques, Sensors-Basel, 16 (2016) 1–43.
- Z. Hu, Y. Zhou, Research on urban water quality monitoring
method based on low-altitude multi-spectral remote sensing,
Geo-spatial Inf., 18 (2020) 4–8.
- K. Dörnhöfer, N. Oppelt, Remote sensing for lake research and
monitoring – recent advances, Ecol. Indic., 64 (2016) 105–122.
- L. Wang, H. Bai, Research review on retrieval of water quality
parameters about lake based on remote sensing techniques,
GNSS World China, 38 (2013) 57–61.
- X. Jin, C. Wang, Z. Yuan, Research on reservoir water quality
monitoring method based on remote sensing, Henan Sci.
Technol., 40 (2021) 43–46.
- A. Ruescas, M. Hieronymi, G. Mateo-Garcia, S. Koponen,
K. Kallio, G. Camps-Valls, Machine learning regression
approaches for colored dissolved organic matter (CDOM)
retrieval with S2-MSI and S3-OLCI simulated data, Remote
Sens., 10 (2018) 786, doi: 10.3390/rs10050786.
- A.P. Piotrowski, M. Osuch, M.J. Napiorkowski, P.M. Rowinski,
J.J. Napiorkowski, Comparing large number of metaheuristics
for artificial neural networks training to predict water
temperature in a natural river, Comput. Geosci.-UK, 64 (2014)
136–151.
- A. Hamzic, Z. Avdagic, S. Omanovic, A Sequential Approach
for Short-Term Water Level Prediction Using Nonlinear
Autoregressive Neural Networks, IEEE, Sarajevo, Bosnia and
Herzegovina, 2016, pp. 1–7.
- M. Mamun, J.-J. Kim, Md. A. Alam, K.-G. An, Prediction of
algal Chlorophyll-a and water clarity in monsoon-region
reservoir using machine learning approaches, Water, 12 (2020)
30, doi: 10.3390/w12010030.
- F. Ma, Q. Jiang, L. Xu, Y. Liang, R. Wang, S. Su, Retrieval of water
quality parameters based on BP neural network algorithm in
Miyun Reservoir, Ecol. Environ. Sci., 29 (2020) 569–579.
- Y. Chen, L. Liu, M. Chen, Comparative analysis of water
quality inversion models based on UAV multispectral data,
China Water Transport, 22 (2022) 29–31.
- Y. Liu, K. Xia, H. Feng, Y. Fang, Inversion of water quality
elements in small and microsize water region using
multispectral image by UAV, Acta Sci. Circum., 39 (2019)
1241–1249.
- R. Kong, Analysis of the Effect of DJI Genie 4 RTK Parameter
Settings on the Efficiency of Aerial Surveying and Mapping,
Pearl River Water Transport, (2020) 53–54.
- L. Chang-hou, Study on Relationship Between the Spectrum
Band Width and the Absorbance Error, Analysis and Technology
and Instruments, (2004) 65–67.
- D. Xiao, Y. Pan, J. Feng, J. Yin, Y. Liu, L. He, Remote sensing
detection algorithm for apple fire blight based on UAV
multispectral image, Comput. Electron. Agric., 199 (2022) 1–12.
- H. Zhu, Y. Huang, Y. Li, F. Yu, G. Zhang, L. Fan, J. Zhou,
Z. Li, M. Yuan, Predicting plant diversity in beach wetland
downstream of Xiaolangdi reservoir with UAV and satellite
multispectral images, Sci. Total Environ., 819 (2022) 1–16.
- X. Tao, Y. Li, Q. Luan, J. Jiang, Estimation of anthocyanin content
in Pinus elliottii based on UAV remote sensing, Acta Agric. Univ.
Jiangxiensis, 43 (2021) 1065–1077.
- J. Li, H. Huang, J. Xiu, B. Li, H. Zhang, Effect and compensation
of overlap influenced by flight parameter of oblique aerial
camera, Opt. Precis. Eng., 28 (2020) 1254–1264.
- B. Chen, X. Mu, P. Chen, B. Wang, J. Choi, H. Park, S. Xu,
Y. Wu, H. Yang, Machine learning-based inversion of water
quality parameters in typical reach of the urban river by UAV
multispectral data, Ecol. Indic., 133 (2021) 1–18.
- J. Xin, Study on main influencing factors of determination
of total phosphorus in water by ammonium molybdate
spectrophotometry, China Resour. Compr. Util., 40 (2022) 23–25.
- D. Xie, Study on determination of total nitrogen in water
by alkaline potassium persulfate method, Leather Technol.,
3 (2022) 25–26.
- C. Chen, Q. Lu, Research and suggestion on the applicability
of turbidity meter method to measure turbidity in water,
Chem. Eng. Des. Commun., 47 (2021) 61–62.
- X. Zhou, S. Ma, Z. Shang, Y. Wang, L. Guo, C. Lin, Determination
of cell density of Microcystis aeruginosa by spectrophotometry,
Water Conserv. Technol. Supervision, 24 (2016) 50–51.
- X. Zhu, L. Liu, Z. Ye, UAV remote sensing monitoring method
for water quality, China Water Transport, (2021) 157–159.
- Q. Shao, X. Guo, Y. Li, Y. Wang, D. Wang, J. Liu, J. Fan, F. Yang,
Using UAV remote sensing to analyze the population and
distribution of large wild herbivores, J. Remote Sens., 22 (2018)
497–507.
- J. Wei, F. Jia-yuan, The least square method and its application,
J. Commun. Univ. China (Sci. Technol.), 27 (2020).
- H. Zhang, B. Yao, S. Wang, G. Wang, Remote sensing estimation
of the concentration and sources of coloured dissolved
organic matter based on MODIS: a case study of Erhai lake,
Ecol. Indic., 131 (2021) 1–12.
- S. Zhu, Z. Chen, Y. Zhang, Cotton seeding emergence
information extraction based on UAV digital image, Mod.
Electron. Tech., 45 (2022) 61–64.
- J. Lu, J.U.H. Eitel, M. Engels, J. Zhu, Y. Ma, F. Liao, H. Zheng,
X. Wang, X. Yao, T. Cheng, Y. Zhu, W. Cao, Y. Tian, Improving
unmanned aerial vehicle (UAV) remote sensing of rice plant
potassium accumulation by fusing spectral and textural
information, Int. J. Appl. Earth Obs. Geoinf., 104 (2021) 1–15.
- Y. Zhang, Y. Zhang, Y. Zha, K. Shi, Y. Zhou, M. Liu, Estimation
of diffuse attenuation coefficient of photosynthetically active
radiation in Xin’anjiang reservoir based on Landsat 8 data,
Environ. Sci., 36 (2015) 4420–4429.
- W. Zhou, H. Yang, L. Xie, H. Li, L. Huang, Y. Zhao, T. Yue,
Hyperspectral inversion of soil heavy metals in three-river
source region based on random forest model, Catena, 202 (2021)
1–10.
- X. Sòria-Perpinyà, E. Vicente, P. Urrego, M. Pereira-Sandoval,
A. Ruíz-Verdú, J. Delegido, J.M. Soria, J. Moreno, Remote
sensing of cyanobacterial blooms in a hypertrophic lagoon
(Albufera of València, Eastern Iberian Peninsula) using multitemporal
Sentinel-2 images, Sci. Total Environ., 698 (2020) 1–10.
- K. Matsui, H. Shirai, Y. Kageyama, H. Yokoyama, Improving
the resolution of UAV-based remote sensing data of water
quality of Lake Hachiroko, Japan by neural networks, Ecol. Inf.,
62 (2021) 1–13.
- F. Wang, C. Zhao, H. Yang, H. Jiang, L. Li, G. Yang, Nondestructive
and in-site estimation of apple quality and maturity
by hyperspectral imaging, Comput. Electron. Agric., 195 (2022)
1–9.
- Z. Yuan, The Monitoring and Analysis of Chlorophyll-a and
Turbidity by Remote Sensing in MinJiang River, Fuzhou
University, 2016, p. 74.