References

  1. V. Sagan, K.T. Peterson, M. Maimaitijiang, P. Sidike, J. Sloan, B.A. Greeling, S. Maalouf, C. Adams, Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing, Earth-Sci. Rev., 205 (2020) 103187, doi: 10.1016/j.earscirev.2020.103187.
  2. Z. Yang, X. Lu, Y. Wu, P. Miao, J. Zhou, Retrieval and model construction of water quantity parameters for UAV hyperspectral remote sensing, Sci. Survey. Mapp., 45 (2020) 60–64.
  3. B. Bansod, R. Singh, R. Thakur, Analysis of water quality parameters by hyperspectral imaging in Ganges River, Spat. Inf. Res., 26 (2018) 203–211.
  4. Y. Tian, H. Huang, G. Zhou, Q. Zhang, J. Tao, Y. Zhang, J. Lin, Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing, Sci. Total Environ., 781 (2021) 1–18.
  5. M. Gholizadeh, A. Melesse, L. Reddi, A comprehensive review on water quality parameters estimation using remote sensing techniques, Sensors-Basel, 16 (2016) 1–43.
  6. Z. Hu, Y. Zhou, Research on urban water quality monitoring method based on low-altitude multi-spectral remote sensing, Geo-spatial Inf., 18 (2020) 4–8.
  7. K. Dörnhöfer, N. Oppelt, Remote sensing for lake research and monitoring – recent advances, Ecol. Indic., 64 (2016) 105–122.
  8. L. Wang, H. Bai, Research review on retrieval of water quality parameters about lake based on remote sensing techniques, GNSS World China, 38 (2013) 57–61.
  9. X. Jin, C. Wang, Z. Yuan, Research on reservoir water quality monitoring method based on remote sensing, Henan Sci. Technol., 40 (2021) 43–46.
  10. A. Ruescas, M. Hieronymi, G. Mateo-Garcia, S. Koponen, K. Kallio, G. Camps-Valls, Machine learning regression approaches for colored dissolved organic matter (CDOM) retrieval with S2-MSI and S3-OLCI simulated data, Remote Sens., 10 (2018) 786, doi: 10.3390/rs10050786.
  11. A.P. Piotrowski, M. Osuch, M.J. Napiorkowski, P.M. Rowinski, J.J. Napiorkowski, Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river, Comput. Geosci.-UK, 64 (2014) 136–151.
  12. A. Hamzic, Z. Avdagic, S. Omanovic, A Sequential Approach for Short-Term Water Level Prediction Using Nonlinear Autoregressive Neural Networks, IEEE, Sarajevo, Bosnia and Herzegovina, 2016, pp. 1–7.
  13. M. Mamun, J.-J. Kim, Md. A. Alam, K.-G. An, Prediction of algal Chlorophyll-a and water clarity in monsoon-region reservoir using machine learning approaches, Water, 12 (2020) 30, doi: 10.3390/w12010030.
  14. F. Ma, Q. Jiang, L. Xu, Y. Liang, R. Wang, S. Su, Retrieval of water quality parameters based on BP neural network algorithm in Miyun Reservoir, Ecol. Environ. Sci., 29 (2020) 569–579.
  15. Y. Chen, L. Liu, M. Chen, Comparative analysis of water quality inversion models based on UAV multispectral data, China Water Transport, 22 (2022) 29–31.
  16. Y. Liu, K. Xia, H. Feng, Y. Fang, Inversion of water quality elements in small and microsize water region using multispectral image by UAV, Acta Sci. Circum., 39 (2019) 1241–1249.
  17. R. Kong, Analysis of the Effect of DJI Genie 4 RTK Parameter Settings on the Efficiency of Aerial Surveying and Mapping, Pearl River Water Transport, (2020) 53–54.
  18. L. Chang-hou, Study on Relationship Between the Spectrum Band Width and the Absorbance Error, Analysis and Technology and Instruments, (2004) 65–67.
  19. D. Xiao, Y. Pan, J. Feng, J. Yin, Y. Liu, L. He, Remote sensing detection algorithm for apple fire blight based on UAV multispectral image, Comput. Electron. Agric., 199 (2022) 1–12.
  20. H. Zhu, Y. Huang, Y. Li, F. Yu, G. Zhang, L. Fan, J. Zhou, Z. Li, M. Yuan, Predicting plant diversity in beach wetland downstream of Xiaolangdi reservoir with UAV and satellite multispectral images, Sci. Total Environ., 819 (2022) 1–16.
  21. X. Tao, Y. Li, Q. Luan, J. Jiang, Estimation of anthocyanin content in Pinus elliottii based on UAV remote sensing, Acta Agric. Univ. Jiangxiensis, 43 (2021) 1065–1077.
  22. J. Li, H. Huang, J. Xiu, B. Li, H. Zhang, Effect and compensation of overlap influenced by flight parameter of oblique aerial camera, Opt. Precis. Eng., 28 (2020) 1254–1264.
  23. B. Chen, X. Mu, P. Chen, B. Wang, J. Choi, H. Park, S. Xu, Y. Wu, H. Yang, Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data, Ecol. Indic., 133 (2021) 1–18.
  24. J. Xin, Study on main influencing factors of determination of total phosphorus in water by ammonium molybdate spectrophotometry, China Resour. Compr. Util., 40 (2022) 23–25.
  25. D. Xie, Study on determination of total nitrogen in water by alkaline potassium persulfate method, Leather Technol., 3 (2022) 25–26.
  26. C. Chen, Q. Lu, Research and suggestion on the applicability of turbidity meter method to measure turbidity in water, Chem. Eng. Des. Commun., 47 (2021) 61–62.
  27. X. Zhou, S. Ma, Z. Shang, Y. Wang, L. Guo, C. Lin, Determination of cell density of Microcystis aeruginosa by spectrophotometry, Water Conserv. Technol. Supervision, 24 (2016) 50–51.
  28. X. Zhu, L. Liu, Z. Ye, UAV remote sensing monitoring method for water quality, China Water Transport, (2021) 157–159.
  29. Q. Shao, X. Guo, Y. Li, Y. Wang, D. Wang, J. Liu, J. Fan, F. Yang, Using UAV remote sensing to analyze the population and distribution of large wild herbivores, J. Remote Sens., 22 (2018) 497–507.
  30. J. Wei, F. Jia-yuan, The least square method and its application, J. Commun. Univ. China (Sci. Technol.), 27 (2020).
  31. H. Zhang, B. Yao, S. Wang, G. Wang, Remote sensing estimation of the concentration and sources of coloured dissolved organic matter based on MODIS: a case study of Erhai lake, Ecol. Indic., 131 (2021) 1–12.
  32. S. Zhu, Z. Chen, Y. Zhang, Cotton seeding emergence information extraction based on UAV digital image, Mod. Electron. Tech., 45 (2022) 61–64.
  33. J. Lu, J.U.H. Eitel, M. Engels, J. Zhu, Y. Ma, F. Liao, H. Zheng, X. Wang, X. Yao, T. Cheng, Y. Zhu, W. Cao, Y. Tian, Improving unmanned aerial vehicle (UAV) remote sensing of rice plant potassium accumulation by fusing spectral and textural information, Int. J. Appl. Earth Obs. Geoinf., 104 (2021) 1–15.
  34. Y. Zhang, Y. Zhang, Y. Zha, K. Shi, Y. Zhou, M. Liu, Estimation of diffuse attenuation coefficient of photosynthetically active radiation in Xin’anjiang reservoir based on Landsat 8 data, Environ. Sci., 36 (2015) 4420–4429.
  35. W. Zhou, H. Yang, L. Xie, H. Li, L. Huang, Y. Zhao, T. Yue, Hyperspectral inversion of soil heavy metals in three-river source region based on random forest model, Catena, 202 (2021) 1–10.
  36. X. Sòria-Perpinyà, E. Vicente, P. Urrego, M. Pereira-Sandoval, A. Ruíz-Verdú, J. Delegido, J.M. Soria, J. Moreno, Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images, Sci. Total Environ., 698 (2020) 1–10.
  37. K. Matsui, H. Shirai, Y. Kageyama, H. Yokoyama, Improving the resolution of UAV-based remote sensing data of water quality of Lake Hachiroko, Japan by neural networks, Ecol. Inf., 62 (2021) 1–13.
  38. F. Wang, C. Zhao, H. Yang, H. Jiang, L. Li, G. Yang, Nondestructive and in-site estimation of apple quality and maturity by hyperspectral imaging, Comput. Electron. Agric., 195 (2022) 1–9.
  39. Z. Yuan, The Monitoring and Analysis of Chlorophyll-a and Turbidity by Remote Sensing in MinJiang River, Fuzhou University, 2016, p. 74.