References

  1. H. Ye, B. Zhao, Y. Zhou, J. Du, M. Huang, Recent advances in adsorbents for the removal of phthalate esters from water: material, modification, and application, Chem. Eng. J., 409 (2021) 128127, doi: 10.1016/j.cej.2020.128127.
  2. H. Amiri, S.S. Martinez, M.A. Shiri, M.M. Soori, Advanced oxidation processes for phthalate esters removal in aqueous solution: a systematic review, Rev. Environ. Health, 37 (2022) 1–22.
  3. M. Gao, Y. Zhang, X. Gong, Z. Song, Z. Guo, Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar, Environ. Sci. Pollut. Res., 25 (2018) 7796–7807.
  4. M. Bodzek, M. Dudziak, K. Luks-Betlej, Application of membrane techniques to water purification. Removal of phthalates, Desalination, 162 (2004) 121–128.
  5. M.A. Shaida, R. Dutta, A. Sen, Removal of diethyl phthalate via adsorption on mineral rich waste coal modified with chitosan, J. Mol. Liq., 261 (2018) 271–282.
  6. S.V. Mohan, S. Shailaja, M.R. Krishna, P. Sarma, Adsorptive removal of phthalate ester (di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study, J. Hazard. Mater., 146 (2007) 278–282.
  7. I. Al-Saleh, R. Elkhatib, T. Al-Rajoudi, G. Al-Qudaihi, Assessing the concentration of phthalate esters (PAEs) and bisphenol A (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia, Sci. Total Environ., 578 (2017) 440–451.
  8. T. Wang, T. Liu, Pulse electro-coagulation application in treating dibutyl phthalate wastewater, Water Sci. Technol., 76 (2017) 1124–1131.
  9. H.-T. Gao, R. Xu, W.-X. Cao, L.-L. Qian, M. Wang, L.-G. Lu, Q. Xu, S.-Q. Yu, Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats, Food Chem. Toxicol., 101 (2017) 94–104.
  10. S. Harris, S.A. Hermsen, X. Yu, S.W. Hong, E.M. Faustman, Comparison of toxicogenomic responses to phthalate ester exposure in an organotypic testis co-culture model and responses observed in vivo, Reprod. Toxicol., 58 (2015) 149–159.
  11. M. Mariana, J. Feiteiro, I. Verde, E. Cairrao, The effects of phthalates in the cardiovascular and reproductive systems: a review, Environ. Int., 94 (2016) 758–776.
  12. H.-T. Gao, R. Xu, W.-X. Cao, Q.-N. Di, R.-X. Li, L.-G. Lu, Q. Xu, S.-Q. Yu, Combined effects of simultaneous exposure to six phthalates and emulsifier glycerol monosterate on male reproductive system in rats, Toxicol. Appl. Pharmacol., 341 (2018) 87–97.
  13. R. Benson, Hazard to the developing male reproductive system from cumulative exposure to phthalate esters— dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate, Regul. Toxicol. Pharm., 53 (2009) 90–101.
  14. J. Yang, R. Hauser, R.H. Goldman, Taiwan food scandal: the illegal use of phthalates as a clouding agent and their contribution to maternal exposure, Food Chem. Toxicol., 58 (2013) 362–368.
  15. Y. Kang, Y.B. Man, K.C. Cheung, M.H. Wong, Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta, Environ. Sci. Technol., 46 (2012) 8422–8430.
  16. A. Musolff, S. Leschik, M. Möder, G. Strauch, F. Reinstorf, M. Schirmer, Temporal and spatial patterns of micropollutants in urban receiving waters, Environ. Pollut., 157 (2009) 3069–3077.
  17. K. Khosravi, G.W. Price, Determination of phthalates in soils and biosolids using accelerated solvent extraction coupled with SPE cleanup and GC-MS quantification, Microchem. J., 121 (2015) 205–212.
  18. A. Saini, J.O. Okeme, E. Goosey, M.L. Diamond, Calibration of two passive air samplers for monitoring phthalates and brominated flame-retardants in indoor air, Chemosphere, 137 (2015) 166–173.
  19. A. Alkenani, T.A. Saleh, Synthesis of amine-modified graphene integrated membrane as protocols for simultaneous rejection of hydrocarbons pollutants, metal ions, and salts from water, J. Mol. Liq., 367 (2022) 120291, doi: 10.1016/j.molliq.2022.120291.
  20. T.A. Saleh, Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies, Environ. Technol. Innovation, 24 (2021) 101821, doi: 10.1016/j.eti.2021.101821.
  21. T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innovation, 20 (2020) 101067, doi: 10.1016/j.eti.2020.101067.
  22. T.A. Saleh, A. Sarı, M. Tuzen, Simultaneous removal of polyaromatic hydrocarbons from water using polymer modified carbon, Biomass Convers. Biorefin., (2022) 1–10, doi: 10.1007/s13399-021-02163-9.
  23. T.A. Saleh, M. Mustaqeem, M. Khaled, Water treatment technologies in removing heavy metal ions from wastewater: a review, Environ. Nanotechnol. Monit. Manage., 17 (2022) 100617, doi: 10.1016/j.enmm.2021.100617.
  24. T.A. Saleh, A.M. Musa, S.A. Ali, Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome black T and chromium ions from binary hazardous waters, J. Colloid Interface Sci., 468 (2016) 324–333.
  25. S.A. Ali, I.B. Rachman, T.A. Saleh, Simultaneous trapping of Cr(III) and organic dyes by a pH-responsive resin containing zwitterionic aminomethylphosphonate ligands and hydrophobic pendants, Chem. Eng. J., 330 (2017) 663–674.
  26. T.A. Saleh, A.M. Elsharif, O.A. Bin-Dahman, Synthesis of amine functionalization carbon nanotube-low symmetry porphyrin derivatives conjugates toward dye and metal ions removal, J. Mol. Liq., 340 (2021) 117024, doi: 10.1016/j.molliq.2021.117024.
  27. A.M. Osman, A.H. Hendi, T.A. Saleh, Simultaneous adsorption of dye and toxic metal ions using an interfacially polymerized silica/polyamide nanocomposite: kinetic and thermodynamic studies, J. Mol. Liq., 314 (2020) 113640, doi: 10.1016/j.molliq.2020.113640.
  28. T.A. Saleh, G. Fadillah, E. Ciptawati, M. Khaled, Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas, TrAC, Trends Anal. Chem., 132 (2020) 116016, doi: 10.1016/j.trac.2020.116016.
  29. A.A. Alazab, T.A. Saleh, Magnetic hydrophobic cellulosemodified polyurethane filter for efficient oil-water separation in a complex water environment, J. Water Process Eng., 50 (2022) 103125, doi: 10.1016/j.jwpe.2022.103125.
  30. T.A. Saleh, Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes, Chem. Eng. J., 404 (2021) 126987, doi: 10.1016/j.cej.2020.126987.
  31. O.A. Bin-Dahman, T.A. Saleh, Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions, Biomass Convers. Biorefin., (2022) 1–14, doi: 10.1007/s13399-022-02382-8.
  32. G. Fadillah, T.A. Saleh, S. Wahyuningsih, Enhanced electrochemical degradation of 4-nitrophenol molecules using novel Ti/TiO2-NiO electrodes, J. Mol. Liq., 289 (2019) 111108, doi: 10.1016/j.molliq.2019.111108.
  33. T.A. Saleh, Characterization, determination and elimination technologies for sulfur from petroleum: toward cleaner fuel and a safe environment, Trends Environ. Anal. Chem., 25 (2020) e00080, doi: 10.1016/j.teac.2020.e00080.
  34. D. Jin, X. Kong, Y. Li, Z. Bai, G. Zhuang, X. Zhuang, Y. Deng, Biodegradation of di-n-butyl phthalate by Achromobacter sp. isolated from rural domestic wastewater, Int. J. Environ. Res. Public Health, 12 (2015) 13510–13522.
  35. C. Chan, K. Wong, W. Chung, T. Chow, P. Wong, Photocatalytic degradation of di(2-ethylhexyl)phthalate adsorbed by chitin A, Water Sci. Technol., 56 (2007) 125–134.
  36. S. Ziembowicz, M. Kida, P. Koszelnik, Removal of dibutyl phthalate (DBP) from landfill leachate using an ultrasonic field, Desal. Water Treat., 117 (2018) 9–14.
  37. Y. Yang, Z.W. Lin, Study on the degradation of plasticizer di(2-ethylhexyl)phthalate by advanced oxidation process, Adv. Mater. Res., 529 (2012) 463–467.
  38. L. Wang, G.Y. Fu, B. Zhao, Z. Zhang, X. Guo, H. Zhang, Degradation of di-n-butyl phthalate in aqueous solution by the O3/UV process, Desal. Water Treat., 52 (2014) 824–833.
  39. N.A. Medellin Castillo, R. Ocampo Perez, R. Leyva Ramos, M. Sanchez Polo, J. Rivera Utrilla, J.D. Méndez Diaz, Removal of diethyl phthalate from water solution by adsorption, photooxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon), Sci. Total Environ., 442 (2013) 26–35.
  40. L. Mansouri, C. Tizaoui, S.-U. Geissen, L. Bousselmi, A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water, J. Hazard. Mater., 363 (2019) 401–411.
  41. G.Z. Kyzas, N. Mengelizadeh, M. Khodadadi Saloot, S. Mohebi, D. Balarak, Sonochemical degradation of ciprofloxacin by hydrogen peroxide and persulfate activated by ultrasound and ferrous ions, Colloids Surf., A, 642 (2022) 128627, doi: 10.1016/j.colsurfa.2022.128627.
  42. T.J. Al-Musawi, M. Yilmaz, S. Mohebi, D. Balarak, Ultraviolet radiation/persulfate/hydrogen peroxide treatment system for the degradation of acid blue 80 dye from a batch flow chemical reactor: effects of operational parameters, mineralization, energy consumption, and kinetic studies, Energy Ecol. Environ., 7 (2022) 630–640.
  43. K.H. Chu, Y.A. Al-Hamadani, C.M. Park, G. Lee, M. Jang, A. Jang, N. Her, A. Son, Y.M. Yoon, Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: a review, Chem. Eng. J., 327 (2017) 629–647.
  44. Y. Yoon, Y. Hwang, M. Kwon, Y. Jung, T.-M. Hwang, J.-W. Kang, Application of O3 and O3/H2O2 as post-treatment processes for color removal in swine wastewater from a membrane filtration system, J. Ind. Eng. Chem., 20 (2014) 2801–2805.
  45. Z. Shu, J.R. Bolton, M. Belosevic, M.G. El Din, Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process, Water Res., 47 (2013) 2881–2889.
  46. J.G. Lin, C.N. Chang, J.R. Wu, Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process, Water Sci. Technol., 33 (1996) 75–81.
  47. S. Rahdar, C.A. Igwegbe, M. Ghasemi, S. Ahmadi, Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2), MethodsX, 6 (2019) 492–499.
  48. A. Seid-Mohammadi, G. Asgarai, Z. Ghorbanian, A. Dargahi, The removal of cephalexin antibiotic in aqueous solutions by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles (US/H2O2/NiO) hybrid process, Sep. Sci. Technol., 55 (2020) 1558–1568.
  49. M. Dehghani, Y. Kamali, F. Jamshidi, M.A. Shiri, M. Nozari, Contribution of H2O2 in ultrasonic systems for degradation of DR-81 dye from aqueous solutions, Desal. Water Treat., 107 (2018) 332–339.
  50. APHA, Standard Methods for the Examination of Water and Wastewater, In “4500-S2− SULFIDE”, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF, Washington, D.C., USA, 2018.
  51. M. Moazzen, A.H. Mahvi, N. Shariatifar, G. Jahed Khaniki, S. Nazmara, M. Alimohammadi, R. Ahmadkhaniha, N. Rastkari, M. Ahmadloo, A. Akbarzadeh, S. Dobaradaran, A.N. Baghani, Determination of phthalate acid esters (PAEs) in carbonated soft drinks with MSPE/GC–MS method, Toxin Rev., 37 (2018) 319–326.
  52. S. Net, A. Delmont, R. Sempéré, A. Paluselli, B. Ouddane, Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review, Sci. Total Environ., 515–516 (2015) 162–180.
  53. Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev., 117 (2017) 11302–11336.
  54. Y. Cai, Y.e. Cai, Y. Shi, J. Liu, S. Mou, Y. Lu, A liquid–liquid extraction technique for phthalate esters with
    water-soluble organic solvents by adding inorganic salts, Microchim. Acta, 157 (2007) 73–79.
  55. M. Nozari, M. Malakootian, N. Jafarzadeh Haghighi Fard, H. Mahmoudi-Moghaddam, Synthesis of Fe3O4@PAC as a magnetic nano-composite for adsorption of dibutyl phthalate from the aqueous medium: modeling, analysis and optimization using the response surface methodology, Surf. Interfaces, 31 (2022) 101981, doi: 10.1016/j.surfin.2022.101981.
  56. M.H. Dehghani, A.H. Mahvi, N. Rastkari, R. Saeedi, S. Nazmara, E. Iravani, Adsorption of bisphenol A (BPA) from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies, Desal. Water Treat., 54 (2015) 84–92.
  57. H. Li, P. Wang, W. Liu, Removal of dibutyl phthalate (DBP) from aqueous solution by adsorption using vanillin-modified chitosan beads (CTSV), Desal. Water Treat., 56 (2015) 452–462.
  58. M. Matouq, Z. Al-Anber, N. Susumu, T. Tagawa, H. Karapanagioti, The kinetic of dyes degradation resulted from food industry in wastewater using high frequency of ultrasound, Sep. Purif. Technol., 135 (2014) 42–47.
  59. J. Khan, M. Tariq, M. Muhammad, M.H. Mehmood, I. Ullah, A. Raziq, F. Akbar, M. Saqib, A. Rahim, A. Niaz, Kinetic and thermodynamic study of oxidative degradation of acid yellow 17 dye by Fenton-like process: effect of HCO3, CO32−, Cl and SO42− on dye degradation, Bull. Chem. Soc. Ethiop., 33 (2019) 243–254.
  60. V.A. Jideani, S.M. Mpotokwana, Modeling of water absorption of Botswana bambara varieties using Peleg’s equation, J. Food Eng., 92 (2009) 182–188.
  61. V.A. Jideani, I. Nkama, E.B. Agbo, I.A. Jideani, Mathematical modeling of odor deterioration of millet (Pennisetum glaucum) dough (fura) as affected by time-temperature and product packaging parameters, Cereal Chem., 79 (2002) 710–714.
  62. L. Sanchez, J.M. Peiro, H. Castillo, M.D. Perez, J.M. Ena, M. Calvo, Kinetic parameters for denaturation of bovine milk lactoferrin, J. Food Sci., 57 (1992) 873–879.
  63. F.D. Montanuci, L.M. de M. Jorge, R.M.M. Jorge, Kinetic, thermodynamic properties, and optimization of barley hydration, Food Sci. Technol., 3 (2013) 690–698.
  64. F. Gholami Borujeni, A. Zahedi, M. Sheikhi, Evaluation of hospital treated wastewater on seed germination and plant growth indices, J. Health Res. Community, 5 (2019) 49–59.
  65. R.I. Khaleel, N. Ismail, M.H. Ibrahim, The impact of wastewater treatments on seed germination and biochemical parameter of Abelmoschus esculentus L., Procedia - Soc. Behav. Sci., 91 (2013) 453–460.
  66. M. Gao, Y. Qi, W. Song, H. Xu, Effects of di-n-butyl phthalate and di(2-ethylhexyl)phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings, Chemosphere, 151 (2016) 76–83.
  67. T.A. Saleh, M. Tuzen, A. Sarı, Effective antimony removal from wastewaters using polymer modified sepiolite: isotherm kinetic and thermodynamic analysis, Chem. Eng. Res. Des., 184 (2022) 215–223.
  68. A. Sarı, T.A. Saleh, M. Tuzen, Development and characterization of polymer-modified vermiculite composite as novel highlyefficient adsorbent for water treatment, Surf. Interfaces, 27 (2021) 101504, doi: 10.1016/j.surfin.2021.101504.
  69. M.H. Dehghani, R.R. Karri, Z.T. Yeganeh, A.H. Mahvi, H. Nourmoradi, M. Salari, A. Zarei, M. Sillanpää, Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: comparison of linear vs non-linear isotherm and kinetic parameters, J. Mol. Liq., 302 (2020) 112526, doi: 10.1016/j.molliq.2020. 112526.
  70. S. Ziembowicz, M. Kida, P. Koszelnik, Sonochemical formation of hydrogen peroxide, Proceedings, 2 (2017) 188, doi: 10.3390/ecws-2-04957.
  71. Y. Jiang, C. Pétrier, T.D. Waite, Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution, Ultrason. Sonochem., 9 (2002) 163–168.
  72. C. Pétrier, The Use of Power Ultrasound for Water Treatment, J.A. Gallego-Juarez, K.F. Graff, Eds., Power Ultrasonics, Elsevier, France, 2015, pp. 939–972.
  73. L. Xu, W. Chu, N. Graham, A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process, Ultrason. Sonochem., 20 (2013) 892–899.
  74. E. Villaroel, J. Silva-Agredo, C. Petrier, G. Taborda, R.A. Torres-Palma, Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix, Ultrason. Sonochem., 21 (2014) 1763–1769.
  75. M. Lim, Y. Son, J. Khim, The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A, Ultrason. Sonochem., 21 (2014) 1976–1981.
  76. Y. Ku, Y.H. Tu, C.M. Ma, Effect of hydrogen peroxide on the decomposition of monochlorophenols by sonolysis in aqueous solution, Water Res., 39 (2005) 1093–1098.
  77. S. Nélieu, L. Kerhoas, J. Einhorn, Degradation of atrazine into ammeline by combined ozone/hydrogen peroxide treatment in water, Environ. Sci. Technol., 34 (2000) 430–437.
  78. S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodrı́guez, Comparison of different advanced oxidation processes for phenol degradation, Water Res., 36 (2002) 1034–1042.
  79. I. Iordache, M. Nechita, N. Aelenei, I. Rosca, G. Apostolescu, M. Peptanariu, Sonochemical enhancement of cyanide ion degradation from wastewater in the presence of hydrogen peroxide, Pol. J. Environ. Stud., 12 (2003) 735–738.
  80. S. Na, C. Jinhua, M. Cui, J. Khim, Sonophotolytic diethyl phthalate (DEP) degradation with UVC or VUV irradiation, Ultrason. Sonochem., 19 (2012) 1094–1098.
  81. I. Hua, U. Pfalzer Thompson, Ultrasonic irradiation of carbofuran: decomposition kinetics and reactor characterization, Water Res., 35 (2001) 1445–1452.
  82. L.K. Weavers, N. Malmstadt, M.R. Hoffmann, Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation, Environ. Sci. Technol., 34 (2000) 1280–1285.
  83. C.A. Igwegbe, S. Ahmadi, S. Rahdar, A. Ramazani, A.R. Mollazehi, Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: sonochemical, sono-nano-chemical and
    sono-nano-chemical/persulfate processes, Environ. Eng. Res., 25 (2020) 178–185.
  84. M. Yegane Badi, M. Vosoughi, H. Sadeghi, S.A. Mokhtari, J. Mehralipour, Ultrasonic-assisted H2O2/TiO2 process in catechol degradation: kinetic, synergistic and optimisation via response surface methodology, Int. J. Environ. Anal. Chem., 102 (2022) 757–770.
  85. A.-R.A. Giwa, I.A. Bello, A.B. Olabintan, O.S. Bello, T.A. Saleh, Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue, Heliyon, 6 (2020) e04454, doi: 10.1016/j.heliyon.2020.e04454.
  86. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (/OH/O in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  87. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts, Chem. Soc. Rev., 45 (2016) 2603–2636.
  88. S. Ahmadi, L. Mohammadi, C.A. Igwegbe, S. Rahdar, A.M. Banach, Application of response surface methodology in the degradation of Reactive Blue 19 using H2O2/MgO nanoparticles advanced oxidation process, Int. J. Ind. Chem., 9 (2018) 241–253.
  89. I.K. Lee, B.M. Lee, Toxicological characterization of phthalic acid, Toxicol. Res., 27 (2011) 191–203.
  90. N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, G. Barzegar, The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment, J. Mol. Liq., 256 (2018) 462–470.