References

  1. A.A.F. Al-Hamadani, S.K. Shukla, Modelling of solar distillation system with phase change material (PCM) storage medium, Varanasi, India, Therm. Sci., 18 (2015), doi: 10.2298/TSCI120102110A.
  2. G.R. Gamea, A.T. Taha, Y.A. Qaid, Simulation model for seawater distillation by solar energy, Misr J. Agric. Eng., 28 (2011) 1053–1072.
  3. P.İ. Ayav, G. Atagündüz, Theoretical and experimental investigations on solar distillation of IZTECH campus area seawater, Desalination, 208 (2006) 169–180.
  4. M.R. Salem, M.R. Salem, M.G. Higazy, M.F. Abdrabbo, Performance enhancement of a solar still distillation unit: a field investigation, Sol. Energy, 202 (2020) 326–341.
  5. Md. W. Akram, S.M. Abdul Motin, M.A. Hoque, N.N. Mustafi, Design, construction and performance test of a solar still for water desalination in Bangladesh perspective, AIP Conf. Proc., 2121 (2019) 130001, doi: 10.1063/1.5115947.
  6. Z.M. Omara, A.E. Kabeel, The performance of different sand beds solar stills, Int. J. Green Energy, 11 (2014) 240–254.
  7. A.E. Kabeel, E. El-Agouz, M.M. Athikesavan, R.D. Ramalingam, R. Sathyamurthy, N. Prakash, C. Prasad, Comparative analysis on freshwater yield from conventional basin-type single slope solar still
    with cement-coated red bricks: an experimental approach, Environ. Sci. Pollut. Res., 27 (2020) 32218–32228.
  8. M. El Hadi Attia, Z. Driss, A.M. Manokar, R. Sathyamurthy, Effect of aluminum balls on the productivity of solar distillate, J. Energy Storage, 30 (2020) 101466, doi: 10.1016/j.est.2020.101466.
  9. A.A.A. Attia, Thermal analysis for system uses solar energy as a pressure source for reverse osmosis (RO) water desalination, Sol. Energy, 86 (2012) 2486–2493.
  10. A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, Assessing the performance of solar desalination system to approach near- ZLD under hyper arid environment, Desal. Water Treat., 57 (2016) 12019–12036.
  11. D. Shukla, K. Modi, Hybrid solar still as a co-generative system and desalination system - an experimental performance evaluation, Cleaner Eng. Technol., 2 (2021) 100063, doi: 10.1016/j.clet.2021.100063.
  12. M. Afrand, A. Behzadmehr, A. Karimipour, A numerical simulation of solar distillation for installation in Chabahar-Iran, Int. J. Mech. Sci., 4 (2010), doi: 10.5281/zenodo.1327810.
  13. N. The Bao, Chapter 3 – The Mathematical Model of Basin- Type Solar Distillation Systems, V. Steffen, Ed., Distillation - Modelling, Simulation and Optimization, InTechOpen, 2019. doi: 10.5772/intechopen.83228.
  14. T.V. Arjunan, H.S. Aybar, J. Orfi, S. Vijayan, Performance Analysis of Solar Desalination Systems, A. Kumar, O. Prakash, Eds., Solar Desalination Technology. Green Energy and Technology, Springer, Singapore, 2019. doi: 10.1007/978-981-13-6887-5_4
  15. W.M. El-Maghlany, Y. El-Samadony, A. Kabeel, Glass cover inclination angle effect on the radiation shape factor within conventional solar still, Desal. Water Treat., 57 (2016) 17722–17730.
  16. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  17. A.F. Muftah, M.A. Alghoul, A. Fudholi, M.M.A. Majeed, K. Sopian, Factors affecting basin type solar still productivity: a detailed review, Renewable Sustainable Energy Rev., 32 (2014) 430–447.
  18. B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of the basin type solar still under local climate conditions, Energy Convers. Manage., 41 (2000) 883–890.
  19. H.A. Mousa, B. Abu-Hijleh, Water film cooling over the glass cover of a solar still including evaporation effects, Energy, 22 (1997) 43–48.
  20. Pr. K. Abdenacer, S. Nafila, Impact of temperature difference (water-solar collector) on solar-still global efficiency, Desalination, 209 (2007) 298–305.
  21. R.V. Dunkel, Solar water distillation: the roof type still and the multiple effect diffusor, Int. Dev. Heat Transfer, 4 (1961) 895.
  22. A. Hoque, A.H. Abir, K.P. Shourov, Solar still for saline water desalination for low‑income coastal areas, Appl. Water Sci., 9 (2019) 104, doi: 10.1007/s13201-019-0986-9.
  23. A.Z. Al-Garni, Productivity enhancement of single slope solar still using immersion-type water heater and external cooling fan during summer, Desal. Water Treat., 52 (2014) 34–36.
  24. J.A. Jones, L.W. Lackey, K.E. Lindsay, Effects of wind and choice of cover material on the yield of a passive solar still, Desal. Water Treat., 52 (2014) 1–3.
  25. W.L. Cheng, Y.K. Huo, Y. Le Nian, Performance of solar still using shape-stabilized PCM: experimental and theoretical investigation, Desalination, 455 (2019) 89–99.
  26. M. Sharma, A. Kr. Tiwari, D.R. Mishra, A review on desalination of water using single slope passive solar still, Int. J. Dev. Res., 6 (2016) 10002–10012.
  27. S.V. Raj, A.M. Manokar, Design and analysis of solar still, Mater. Today Proc., 4 (2017) 9179–9185.
  28. O.O. Badran, Experimental study of the enhancement parameters on a single slope solar still productivity, Desalination, 209 (2007) 136–143.
  29. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still, Energy Convers. Manage., 13 (2002) 1639–1650.
  30. A. Kr. Tiwari, G.N. Tiwari, Thermal modeling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: the effect of water depths, Desalination, 207 (2007) 184–204.
  31. H.M. Ahmed, G.A. Ibrahim, Performance evaluation of a conventional solar still with different types and layouts of wick materials, Int. J. Energy Technol. Policy, 6 (2016) 5–14.
  32. D.G.H. Samuel, P.K. Nagarajan, R. Sathyamurthy, S.A. El-Agouz, E. Kannan, Improving the yield of freshwater in conventional solar still using low-cost energy storage material, Energy Convers. Manage., 112 (2016) 125–134.
  33. M.M. Morad, H.A.M. El-Maghawry, K.I. Wasfy, A developed solar-powered desalination system for enhancing freshwater productivity, Sol. Energy, 146 (2017) 20–29.
  34. R. Kalbasi, M.N. Esfahani, Multi-effect passive desalination system, an experimental approach, World Appl. Sci. J., 10 (2010) 1264–1271.
  35. M.N.I. Sarkar, A.I. Sifat, S.M.S. Reza, M.S. Sadique, A review of optimum parameter values of a passive solar still and a design for southern Bangladesh, Renewables Wind Water Solar, 4 (2017) 1–13.
  36. V.K. Thakur, M.K. Gaur, M.K. Sagar, Performance Analysis of Different Tilt Angles-Based Solar Still, H.M. Dubey, M. Pandit, L. Srivastava, B.K. Panigrahi, Eds., Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent Systems, Springer, Singapore, 2022. doi: 10.1007/978-981-16-1220-6_17
  37. V. Sivakumar, E.G. Sundaram, Improvement techniques of solar still efficiency: a review, Renewable Sustainable Energy Rev., 28 (2013) 246–264.
  38. S.A. El-Agouz, Experimental investigation of stepped solar still with continuous water circulation, Energy Convers. Manage., 86 (2014) 186–193.
  39. H. Fadhel, Q.A. Abed, D.M. Al-Shamkhee, A review on improvement techniques of freshwater productivity for solar distillation systems, Al-Furat J. Innovations Mech. Sustainable Energy Eng., 1 (2021) 1–15.
  40. H.N. Singh, G.N. Tiwari, Monthly performance of passive and active solar stills for different Indian climatic conditions, Desalination, 168 (2004) 145–150.
  41. K.P. Paaijmans, W. Takken, A.K. Githeko, A.F.G. Jacob, The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae, Int. J. Biometeorol., 52 (2008) 747–753.
  42. T. Arunkumar, K. Raj, M. Chaturvedi, A. Thenmozhi, D. Denkenberger, G. Tingting, A review on distillate water quality parameter analysis in solar still, Int. J. Ambient Energy, 42 (2021) 1335–1342.
  43. S.M. Shalaby, E. El-Bialy, A.A. El-Sebaii, An experimental investigation of a v-corrugated absorber single-basin solar still using PCM, Desalination, 398 (2016) 247–255.