References
- Y.C. Lu, J.H. Mao, W. Zhang, C. Wang, M. Cao, X.D. Wang,
K.Y. Wang, X.H. Xiong, A novel strategy for selective removal
and rapid collection of triclosan from aquatic environment
using magnetic molecularly imprinted nano-polymers, Chemosphere,
238 (2020) 124640, doi: 10.1016/j.chemosphere.2019.124640.
- H.L. So, K.Y. Lin, W. Chu, Triclosan removal by heterogeneous
Fenton-like process: studying the kinetics and surface
chemistry of Fe3O4 as catalyst, J. Environ. Chem. Eng., 7 (2019)
103432, doi: 10.1016/j.jece.2019.103432.
- P.R. Teixeira, T.R. Machado, F. Machado, F.F. Sodré, J.G. Silva,
B.A.D. Neto, L.G. Paterno, Au nanoparticle-poly(ionic liquid)
nanocomposite electrode for the voltammetric detection of
triclosan in lake water and toothpaste samples, Microchem. J.,
152 (2020) 104421, doi: 10.1016/j.microc.2019.104421.
- Y. Lin, X. Jin, G. Owens, Z. Chen, Simultaneous removal of
mixed contaminants triclosan and copper by green synthesized
bimetallic iron/nickel nanoparticles, Sci. Total Environ.,
695 (2019) 133878, doi: 10.1016/j.scitotenv.2019.133878.
- J. Lu, Z. Guo, S. Wang, M. Li, N. Wang, L. Zhou, H. Wu, J. Zhang,
Remove of triclosan from aqueous solutions by nanoflower
MnO2: insight into the mechanism of oxidation and adsorption,
Chem. Eng. J., 426 (2021) 131319, doi: 10.1016/j.cej.2021.131319.
- L.A. González-Fernández, N.A. Medellín-Castillo, R. Ocampo-Pérez, H. Hernández-Mendoza,
M.S. Berber-Mendoza,
C. Aldama-Aguilera, Equilibrium and kinetic modelling of
triclosan adsorption on single-walled carbon nanotubes,
J. Environ. Chem., 9 (2021) 106382, doi: 10.1016/j.jece.2021.106382.
- S.K. Behera, S. Oh, H. Park, Sorption of triclosan onto activated
carbon, kaolinite and montmorillonite: effects of pH, ionic
strength, and humic acid, J. Hazard. Mater., 179 (2010) 684–691.
- M. Triwiswara, C. Lee, J. Moon, S. Park, Adsorption of triclosan
from aqueous solution onto char derived from palm kernel
shell, Desal. Water Treat., 177 (2020) 71–79.
- E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S. Jeong,
S.-J. Park, Removal of triclosan from aqueous solution via
adsorption by kenaf-derived biochar: its adsorption mechanism
study via spectroscopic and experimental approaches,
J. Environ. Chem. Eng., 9 (2021) 106343, doi: 10.1016/j.jece.2021.106343.
- E. Cho, J. Moon, C. Lee, S. Park, Removal of triclosan from
aqueous solution using biochar derived from seed shell of
Aesculus turbinata, Desal. Water Treat., 266 (2022) 256–267.
- J.-K. Kang, E.-J. Seo, C.-G. Lee, J.-K. Moon, S.J. Park, Effectivity
and adsorption mechanism of food waste biochar for triclosan
removal: a spectroscopic and experimental approach, Biomass
Convers. Biorefin., (2021), doi: 10.1007/s13399-021-01997-7.
- D. Naghipour, K. Taghavi, M. Ashournia, J. Jaafari,
R.A. Movarrekh, A study of Cr(VI) and NH4+ adsorption using
greensand (glauconite) as a low-cost adsorbent from aqueous
solutions, Water Environ. J., 34 (2020) 45–56.
- D. Naghipour, L. Hoseinzadeh, K. Taghavi, J. Jaafari,
Characterization, kinetic, thermodynamic and isotherm data
for diclofenac removal from aqueous solution by activated
carbon derived from pine tree, Data Brief, 18 (2018) 1082–1087.
- X. Hu, Z. Cheng, Z. Sun, Adsorption of diclofenac and
triclosan in aqueous solution by purified multi-walled carbon
nanotubes, Pol. J. Environ. Stud., 26 (2017) 87–95.
- V. Krstić, T. Urosević, B. Pesovski, A review on adsorbents for
treatment of water and wastewaters containing copper ions,
Chem. Eng. Sci., 192 (2018) 273–287.
- D.P. Mohapatra, D.M. Kirpalani, Advancement in treatment of
wastewater: fate of emerging contaminants, Can. J. Chem. Eng.,
97 (2019) 2621–2631.
- L.F. Cusioli, H.B. Quesada, A.L.B.P. Castro, R.G. Gomes,
R. Bergamasco, Development of a new low-cost adsorbent
functionalized with iron nanoparticles for removal of metformin
from contaminated water, Chemosphere, 247 (2020) 125852,
doi: 10.1016/j.chemosphere.2020.125852.
- S. Sun, J. Zhu, Z. Zheng, J. Li, M. Gan, Biosynthesis of
β-cyclodextrin modified Schwertmannite and the application
in heavy metals adsorption, Powder Technol., 342 (2019)
181–192.
- S.S. Fiyadh, M.A. Alsaadi, W.Z. Jaafar, M.K. Alomar, S.S. Fayaed,
N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal
adsorption processes by carbon nanotube, J. Cleaner Prod.,
230 (2019) 783–793.
- T. Du, L.-F. Zhou, Q. Zhang, L.-Y. Liu, L. Wen-Bin,
H.-K. Liu, Mesoporous structured aluminaosilicate with
excellent adsorption performances for water purification,
Sustainable Mater.Technol., 18 (2018) e00080, doi: 10.1016/j.susmat.2018.e00080.
- N. Eroglu, M. Emekci, C.G. Athanassiou, Applications of
natural zeolites on agriculture and food production, J. Sci. Food
Agric., 97 (2017) 3487–3499.
- N. Rajic, D. Stojakovic, N. Daneu, A. Recnik, The formation
of oxide nanoparticles on the surface of natural clinoptilolite,
J. Phys. Chem. Solids, 72 (2011) 800–803.
- A. Ates, The modification of aluminium content of natural
zeolites with different composition, Powder Technol.,
344 (2019) 199–207.
- N.K.E.M. Khori, T. Hadibarata, M. Elshikh, A.A. Al-Ghamdi,
Salmiati, Z. Yusop, Triclosan removal by adsorption using
activated carbon derived from waste biomass: isotherms and
kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
- S. Lagergren, Zur theorie der sogenannten adsorption gelster
stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar,
24 (1898) 1–39.
- Y.S. Ho, G. Mckay, The kinetics of sorption of basic dyes from
aqueous solution by sphagnum moss peat, Can. J. Chem. Eng.,
76 (1998) 822–827.
- C. Lei, Y. Hu, M. He, Adsorption characteristics of triclosan
from aqueous solution onto cetylpyridinium bromide (CPB)
modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
- H.N. Tran, S. You, A. Hosseini-Bandegharaei, H. Chao,
Mistakes and inconsistencies regarding adsorption of
contaminants from aqueous solutions: a critical review, Water
Res., 120 (2017) 88–116.
- F.T. Ramos, O.L.S. Weber, E.B. Morais, E.F.G.C. Dores,
Z.M. Lima, J.M.P. Novais, Physical, chemical, and
microbiological evaluation of a compost conditioned with
zeolites, Afr. J. Agric. Res., 13 (2018) 664–672.
- Z. Tisler, J. Horacek, J. Safar, R. Velvarska, L. Poliskova, J. Kocik,
Y. Gherib, K. Marklova, R. Bulanek, D. Kubicka, Clinoptilolite
foams prepared by alkali activation of natural zeolite and
their post-synthesis modifications, Microporous Mesoporous
Mater., 282 (2019) 169–178.
- D. Mantovani, H.B. Quesada, R.S. Antônio, L.F. Cusioli, L. Nishi,
A. Diório, P.F. Soares, R. Bergamasco, M.F. Vieira, Adsorption of
methylene blue from effluent using golden mussel (Limnoperna
fortunei) shell as a low-cost material, Desal. Water Treat.,
188 (2020) 232–238.
- C.S.T. Araújo, V.N. Alves, H.C. Rezende, I.L.S. Almeida,
R.M.N. Assunção, C.R.T. Tarley, M.G. Segatelli, N.M.M. Coelho,
Characterization and use of Moringa oleifera seeds as biosorbent
for removing metal ions from aqueous effluents, Water Sci.
Technol., 62 (2010) 2198–2203.
- H. Kaur, G. Hippargi, G.R. Pophali, A. Bansiwal, Biomimetic
lipophilic activated carbon for enhanced removal of triclosan
from water, J. Colloid Interface Sci., 535 (2019) 111–121.
- J.E. da Silva, F.I.L. Rodrigues, S.N. Pacífico, L.F. Santiago,
C.R. Muniz, G.D. Saraiva, R.F. do Nascimento,
V. de O. Sousa
Neto, Estudo de Cinética e Equilíbrio de Adsorção Empregando
a Casca do Coco Modificada Quimicamente para a Remoção
de Pb(II) de Banho Sintético, Rev. Virtual Quim., 10 (2018).
- M. Triwiswara, C. Lee, J. Moon, S. Park, Adsorption of triclosan
from aqueous solution onto char derived from palm kernel
shell, Desal. Water Treat., 177 (2020) 71–79.
- R.F. Nascimento, A.C.A. Lima, C.B. Vidal, D.Q. Melo,
G.S.C. Raulino, Adsorção: aspectos teóricos e aplicações
ambientais, Fortaleza, 2020.
- V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study
and equilibrium isotherm analysis of Congo red adsorption by
clay materials, Chem. Eng. J., 148 (2009) 354–364.
- G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals
from waters by means of natural zeolites, Water Res., 18 (1984)
1501–1507.
- R.M. Karthik, L. Philip, Removal and risk assessment of
pharmaceuticals and personal care products in a decentralized
greywater treatment system serving an Indian rural community,
J. Environ. Chem. Eng., 9 (2021) 106832, doi: 10.1016/j.jece.2021.106832.
- I.M. Reck, R.M. Paixão, R. Bergamasco, M.F. Vieira,
A.M.S. Vieira, Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous
effluents, J. Cleaner Prod., 171 (2018) 85–97.
- Y. Li, P. Bai, Y. Yan, W. Yan, W. Shi, R. Xu, Removal of Zn2+, Pb2+,
Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite,
Microporous Mesoporous Mater., 279 (2019) 203–211.