References

  1. H. Park, J. Kim, Y.-G. Lee, K. Chon, Enhanced adsorptive removal of dyes using mandarin peel biochars via chemical activation with NH4Cl and ZnCl2, Water, 13 (2021) 1495, doi: 10.3390/w13111495.
  2. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  3. O. Anjaneya, S. Shrishailnath, K. Guruprasad, A.S. Nayak, S. Mashetty, T. Karegoudar, Decolourization of Amaranth dye by bacterial biofilm in batch and continuous packed bed bioreactor, Int. Biodeterior. Biodegrad., 79 (2013) 64–72.
  4. E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ. Int., 30 (2004) 953–971.
  5. S. Shabbir, M. Faheem, N. Ali, P.G. Kerr, Y. Wu, Evaluating role of immobilized periphyton in bioremediation of azo dye Amaranth, Bioresour. Technol., 225 (2017) 395–401.
  6. M. Karkmaz, E. Puzenat, C. Guillard, J. Herrmann, Photocatalytic degradation of the alimentary azo dye Amaranth: mineralization of the azo group to nitrogen, Appl. Catal., B, 51 (2004) 183–194.
  7. W. Przystaś, E. Zabłocka-Godlewska, E. Grabińska-Sota, Biological removal of azo and triphenylmethane dyes and toxicity of process by-products, Water Air Soil Pollut., 223 (2012) 1581–1592.
  8. M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity, Colloids Surf., B, 157 (2017) 456–463.
  9. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies, J. Colloid Interface Sci., 362 (2011) 457–462.
  10. A. Mittal, D. Kaur, J. Mittal, Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials, J. Hazard. Mater., 163 (2009) 568–577.
  11. V. Golob, A. Vinder, M. Simonič, Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents, Dyes Pigm., 67 (2005) 93–97.
  12. M. Li, Z. Qiang, C. Pulgarin, J. Kiwi, Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor, Appl. Catal., B, 187 (2016) 83–89.
  13. E. Sharifpour, H.Z. Khafri, M. Ghaedi, A. Asfaram, R. Jannesar, Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: experimental design optimization, Ultrason. Sonochem., 40 (2018) 373–382.
  14. S. Ahad, N. Islam, A. Bashir, S.-u. Rehman, A.H. Pandith, Adsorption studies of Malachite green on
    5-sulphosalicylic acid doped tetraethoxysilane (SATEOS) composite material, RSC Adv., 5 (2015) 92788–92798.
  15. J.T. da Fontoura, G.S. Rolim, B. Mella, M. Farenzena, M. Gutterres, Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent, J. Environ. Chem. Eng., 5 (2017) 5076–5084.
  16. K. Thines, E. Abdullah, N. Mubarak, M. Ruthiraan, Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for wastewater and polymer application: a review, Renewable Sustainable Energy Rev., 67 (2017) 257–276.
  17. J. Yu, X. Zhang, D. Wang, P. Li, Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure, Water Sci. Technol., 77 (2018) 1303–1312.
  18. A.A. Abdelhafez, J. Li, Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel, J. Taiwan Inst. Chem. Eng., 61 (2016) 367–375.
  19. S. Jeffery, F.G. Verheijen, M. van der Velde, A.C. Bastos, A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis, Agric. Ecosyst. Environ., 144 (2011) 175–187.
  20. A. Jahanban-Esfahlan, R. Jahanban-Esfahlan, M. Tabibiazar, L. Roufegarinejad, R. Amarowicz, Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based biosorbent for the removal of hazardous materials, RSC Adv., 10 (2020) 7026–7047.
  21. M.E. Mahmoud, A.M. Abdelfattah, R.M. Tharwat, G.M. Nabil, Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: optimization, kinetics and thermodynamic study, J. Mol. Liq., 318 (2020) 114297, doi: 10.1016/j.molliq.2020.114297.
  22. A. Ashiq, B. Sarkar, N. Adassooriya, J. Walpita, A.U. Rajapaksha, Y.S. Ok, M. Vithanage, Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media, Chemosphere, 236 (2019) 124384, doi: 10.1016/j.chemosphere.2019.124384.
  23. Y. Qiu, X. Xu, Z. Xu, J. Liang, Y. Yu, X. Cao, Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties, Chem. Eng. J., 389 (2020) 124471, doi: 10.1016/j.cej.2020.124471.
  24. J.S. Adiansyah, M. Rosano, S. Vink, G. Keir, A framework for a sustainable approach to mine tailings management: disposal strategies, J. Cleaner Prod., 108 (2015) 1050–1062.
  25. M.O. Mendez, R.M. Maier, Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology, Environ. Health Perspect., 116 (2008) 278–283.
  26. Y. Ahn, D.-W. Cho, W. Ahmad, J. Jo, J. Jurng, M.B. Kurade, B.-H. Jeon, J. Choi, Efficient removal of formaldehyde using metal-biochar derived from acid mine drainage sludge and spent coffee waste, J. Environ. Manage., 298 (2021) 113468, doi: 10.1016/j.jenvman.2021.113468.
  27. N. Araya, A. Kraslawski, L.A. Cisternas, Towards mine tailings valorization: recovery of critical materials from Chilean mine tailings, J. Cleaner Prod., 263 (2020) 121555, doi: 10.1016/j.jclepro.2020.121555.
  28. G. Zhang, Y. Ma, Mechanistic and conformational studies on the interaction of food dye Amaranth with human serum albumin by multispectroscopic methods, Food Chem., 136 (2013) 442–449.
  29. G.A. Epling, C. Lin, Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere, 46 (2002) 561–570.
  30. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  31. J. Liu, W. Cheng, X. Yang, Y. Bao, Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions, Sci. Total Environ., 704 (2020) 135252, doi: 10.1016/j.scitotenv.2019.135252.
  32. K. Narasimharao, G.K.R. Angaru, Z.H. Momin, S. Al-Thabaiti, M. Mokhtar, A. Alsheshri, S.Y. Alfaifi, J.R. Koduru,
    Y.-Y. Chang, Orange waste biochar-magnesium silicate (OBMS) composite for enhanced removal of U(VI) ions from aqueous solutions, J. Water Process Eng., 51 (2023) 103359, doi: 10.1016/j.jwpe.2022.103359.
  33. L.P. Lingamdinne, S.K. Godlaveeti, G.K.R. Angaru, Y.-Y. Chang, R.R. Nagireddy, A.R. Somala, J.R. Koduru, Highly efficient surface sequestration of Pb2+ and Cr3+ from water using a Mn3O4 anchored reduced graphene oxide: selective removal of Pb2+ from real water, Chemosphere, 299 (2022) 134457, doi: 10.1016/j.chemosphere.2022.134457.
  34. B. Hayati, N.M. Mahmoodi, Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: mechanism, isotherm and kinetic, Desal. Water Treat., 47 (2012) 322–333.
  35. L. Luo, G. Wang, G. Shi, M. Zhang, J. Zhang, J. He, Y. Xiao, D. Tian, Y. Zhang, S. Deng, The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water, J. Environ. Manage., 245 (2019) 1–7.
  36. R. Zhang, X. Zheng, B. Chen, J. Ma, X. Niu, D. Zhang, Z. Lin, M. Fu, S. Zhou, Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar, J. Cleaner Prod., 256 (2020) 120662, doi: 10.1016/j.jclepro.2020.120662.
  37. B. Chen, Z. Chen, S. Lv, A novel magnetic biochar efficiently sorbs organic pollutants and phosphate, Bioresour. Technol., 102 (2011) 716–723.
  38. M. Xie, W. Chen, Z. Xu, S. Zheng, D. Zhu, Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions, Environ. Pollut., 186 (2014) 187–194.
  39. S. Wang, C. Zhao, R. Shan, Y. Wang, H. Yuan, A novel peat biochar supported catalyst for the transesterification reaction, Energy Convers. Manage., 139 (2017) 89–96.
  40. S. Gupta, G.K. Gupta, M.K. Mondal, Slow pyrolysis of chemically treated walnut shell for valuable products: effect of process parameters and in-depth product analysis, Energy, 181 (2019) 665–676.
  41. M.L. Alvarez, G. Gascó, T. Palacios, J. Paz-Ferreiro, A. Méndez, Fe oxides-biochar composites produced by hydrothermal carbonization and pyrolysis of biomass waste, J. Anal. Appl. Pyrolysis, 151 (2020) 104893, doi: 10.1016/j.jaap.2020.104893.
  42. Y. Zhang, K. Xia, X. Liu, Z. Chen, H. Du, X. Zhang, Synthesis of cationic-modified silica gel and its adsorption properties for anionic dyes, J. Taiwan Inst. Chem. Eng., 102 (2019) 1–8.
  43. S. Li, L. Shao, H. Zhang, P. He, F. Lü, Quantifying the contributions of surface area and redox-active moieties to electron exchange capacities of biochar, J. Hazard. Mater., 394 (2020) 122541, doi: 10.1016/j.jhazmat.2020.122541.
  44. J. Shin, J. Kwak, S. Kim, C. Son, Y.-G. Lee, S. Baek, Y. Park, K.-J. Chae, E. Yang, K. Chon, Facilitated physisorption of ibuprofen on waste coffee residue biochars through simultaneous magnetization and activation in groundwater and lake water: adsorption mechanisms and reusability, J. Environ. Chem. Eng., 10 (2022) 107914, doi: 10.1016/j.jece.2022.107914.
  45. T. Chen, Z. Zhou, R. Han, R. Meng, H. Wang, W. Lu, Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism, Chemosphere, 134 (2015) 286–293.
  46. S. Banerjee, S. Mukherjee, A. LaminKa-Ot, S. Joshi, T. Mandal, G. Halder, Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation, J. Adv. Res., 7 (2016) 597–610.
  47. S. Mondal, K. Bobde, K. Aikat, G. Halder, Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies, J. Environ. Manage., 182 (2016) 581–594.
  48. S. Chen, C. Qin, T. Wang, F. Chen, X. Li, H. Hou, M. Zhou, Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism, J. Mol. Liq., 285 (2019) 62–74.
  49. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  50. Y.-G. Lee, J. Shin, J. Kwak, S. Kim, C. Son, G.-Y. Kim, C.-H. Lee, K. Chon, Enhanced adsorption capacities of fungicides using peanut shell biochar via successive chemical modification with KMnO4 and KOH, Separations, 8 (2021) 52, doi: 10.3390/ separations8040052.
  51. J. Shin, Y.-G. Lee, J. Kwak, S. Kim, S.-H. Lee, Y. Park, S.-D. Lee, K. Chon, Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds, J. Environ. Chem. Eng., 9 (2021) 105119, doi: 10.1016/j. jece.2021.105119.
  52. J. Xie, R. Lin, Z. Liang, Z. Zhao, C. Yang, F. Cui, Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism, J. Environ. Chem. Eng., 9 (2021) 105744, doi: 10.1016/j.jece.2021.105744.
  53. B. Qiu, Q. Shao, J. Shi, C. Yang, H. Chu, Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges, Sep. Purif. Technol., 300 (2022) 121925, doi: 10.1016/j.seppur.2022.121925.
  54. J. Kim, G.-H. Bak, D.-Y. Yoo, Y.-I. Lee, Y.-G. Lee, K. Chon, Functionalization of pine sawdust biochars with Mg/Al layered double hydroxides to enhance adsorption capacity of synthetic azo dyes: adsorption mechanisms and reusability, Heliyon, 9 (2023) e14142, doi: 10.1016/j.heliyon.2023.e14142.