References

  1. WRI, AqueductTM Water Risk Atlas (Aqueduct 3.0), 2019, Available at: https://www.wri.org/applications/aqueduct (Accessed: 2020 July 22).
  2. R.D. Garreaud, C. Alvarez-Garreton, J. Barichivich, J.P. Boisier, D. Christie, M. Galleguillos, C. LeQuesne, J. McPhee, M. Zambrano-Bigiarini, The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21 (2017) 6307–6327.
  3. IWA, Desalination – Past, Present and Future, International Water Association, 2016, Available at: https://iwa-network.org/ desalination-past-present-future/ (Accessed: 2020 Jul 22).
  4. G.E. Dévora-Isiordia, R. Gonzales-Enríquez, S. Ruiz-Cruz, Evaluation of desalination processes and their development in Mexico, Tecnol. Cienc. Agua, 4 (2013) 27–46.
  5. M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: a review, Renewable Sustainable Energy Rev., 97 (2018) 456–477.
  6. E. Tzen, R. Morris, Renewable energy sources for desalination, Sol. Energy, 75 (2003) 375–379.
  7. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  8. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energypowered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  9. ESCWA (Economic and Social Commission for Western Asia), Role of Desalination in Addressing Water Scarcity, 2009. Available at: https://digitallibrary.un.org/record (Accessed: 2020 Jul 22).
  10. R.G. Raluy, L. Serra, J. Uche, A. Valero, Life-cycle assessment of desalination technologies integrated with energy production systems, Desalination, 167 (2004) 445–458.
  11. K.V. Reddy, N. Ghaffour, Overview of the cost of desalinated water and costing methodologies, Desalination, 205 (2007) 340–353.
  12. E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy: review and state-of-the-art, Desalination, 203 (2007) 346–365.
  13. J.J. Sadhwani, M. Sagaseta de Ilurdoz, Primary energy consumption in desalination: the case of Gran Canaria, Desalination, 452 (2019) 219–229.
  14. D. Avila, R. Alesanco, J. Véliz, Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras, Ing. Mecánica, 14 (2011) 22–30.
  15. World Bank, Renewable Energy Desalination: An Emerging Solution to Close the Water Gap in MENA Development Report, World Bank, Washington, D.C., 2013, pp 232.
  16. I. Janghorban, P. Ifaei, J. Kim, C. Yoo, Design of hybrid renewable energy systems with battery/hydrogen storage considering practical power losses: a MEPoPA (modified extended-power pinch analysis), Energy, 100 (2016) 40–50.
  17. A. Vazquez-Figueroa, El Agua Prometida, Penguin Ra. Debolsillo Barcelona, España, 2003, p. 240.
  18. M.A. Elhadidy, S.M. Shaahid, Promoting applications of hybrid (wind+photovoltaic+diesel+battery) power systems in hot regions, Renewable Energy, 29 (2004) 517–528.
  19. S.A. Kalogirou, Seawater desalination using renewable energy source, Prog. Energy Combust. Sci., 31 (2005) 242–281.
  20. M. Forstmeier, F. Mannerheim, F. D’Amato, M. Shah, Y. Liu, M. Baldea, A. Stella, Feasibility study on wind-powered desalination, Desalination, 203 (2007) 463–470.
  21. E.A.F.A. Fadigas, J.R. Dias, Desalination of water by reverse osmosis using gravitational potential energy and wind energy, Desalination, 237 (2009) 140–146.
  22. H. Cherif, J. Belhadj, Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic-wind system feeding a reverse osmosis desalination unit, Energy, 36 (2011) 6058–6067.
  23. Q. Li, W. Moya, I. Janghorban, J. Rashidi, C. Yoo, Integration of reverse osmosis desalination with hybrid renewable energy sources and battery storage using electricity supply and demand-driven power pinch análisis, Process Saf. Environ. Prot., 111 (2017) 795–809.
  24. Ministerio de Energía, Facultad de Cs Físicas y Matemáticas Universidad de Chile, “El Explorador Solar”, 2013. Available at: http://ernc.dgf.uchile.cl:48080/inicio (Accessed: 2020 Aug. 22).
  25. R. Raineri, Transición Energética en Chile: Una Verdad Incómoda, Clapes UC, 2018, p. 86.
  26. A. Beltrán, H. Gracia-León, D. Rodríguez-Urrego, L. Rodríguez- Urrego, Design and calculation of a hybrid solar-hydraulic power station in Gran Canaria, DYNA, 85 (2018) 250–257.
  27. Ministerio de Energía G de C. Ley 20.571, Regula el Pago de Tarifas Eléctricas de las Generadoras Residenciales, 2013.
  28. R. Krueger, Selecting Hydraulic Reaction Turbines, Technical Information Branch DFC, USA, 1954, p. 45.
  29. RETScreen, Clean Energy Managment Software, Government of Canada, 2018. Available at https://www.nrcan.gc.ca/energy/ retscreen/7465 (Accessed: 2019 Jun 2).
  30. ASME B31.4, Pipeline Transportation Systems for Liquids and Slurries, American Society of Mechanical Engineers, 2019, p. 132.
  31. CYPE, Ingenieros SA, Generador de precios de la construcción, Chile, 2019. Available at http://www.chile.generadordeprecios. info/ (Accessed: 2019 June 11).
  32. Banco Central de Chile, Estadísticas, Banco Central de Chile, 2003. Available at https://www.bcentral.cl/web/guest/ estadisticas (Accessed: 2019 July 12).
  33. P.F. Cárcamo, M. Cortés, L. Ortega, F.A. Squeao, C.F. Gaymer, Chronicle of a foretold conflict: three coal-fired power plants in a biodiversity hotspot of global significance, Rev. Chil. de Hist. Nat., 84 (2011) 171–180.
  34. Ministerio de Energía, Indicadores Ambientales Factor de Emisiones GEI del Sistema Eléctrico Nacional, 2019. Available at https://energia.gob.cl/indicadores-ambientales-factor-deemisiones-gei-del-sistema-electrico-nacional (Accessed: 2019 June 3).