References
- WRI, AqueductTM Water Risk Atlas (Aqueduct 3.0), 2019,
Available at: https://www.wri.org/applications/aqueduct
(Accessed: 2020 July 22).
- R.D. Garreaud, C. Alvarez-Garreton, J. Barichivich,
J.P. Boisier, D. Christie, M. Galleguillos, C. LeQuesne, J. McPhee,
M. Zambrano-Bigiarini, The 2010–2015 megadrought in central
Chile: impacts on regional hydroclimate and vegetation,
Hydrol. Earth Syst. Sci., 21 (2017) 6307–6327.
- IWA, Desalination – Past, Present and Future, International
Water Association, 2016, Available at: https://iwa-network.org/
desalination-past-present-future/ (Accessed: 2020 Jul 22).
- G.E. Dévora-Isiordia, R. Gonzales-Enríquez, S. Ruiz-Cruz,
Evaluation of desalination processes and their development
in Mexico, Tecnol. Cienc. Agua, 4 (2013) 27–46.
- M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid
renewable energy system as a potential energy source
for water desalination using reverse osmosis: a review,
Renewable Sustainable Energy Rev., 97 (2018) 456–477.
- E. Tzen, R. Morris, Renewable energy sources for desalination,
Sol. Energy, 75 (2003) 375–379.
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment
nexus underpinning future desalination
sustainability, Desalination, 413 (2017) 52–64.
- A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and
water production cost of conventional and renewable-energypowered
desalination processes, Renewable Sustainable
Energy Rev., 24 (2013) 343–356.
- ESCWA (Economic and Social Commission for Western Asia),
Role of Desalination in Addressing Water Scarcity, 2009. Available
at: https://digitallibrary.un.org/record (Accessed: 2020 Jul 22).
- R.G. Raluy, L. Serra, J. Uche, A. Valero, Life-cycle assessment
of desalination technologies integrated with energy production
systems, Desalination, 167 (2004) 445–458.
- K.V. Reddy, N. Ghaffour, Overview of the cost of desalinated
water and costing methodologies, Desalination, 205 (2007)
340–353.
- E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination
by using alternative energy: review and state-of-the-art,
Desalination, 203 (2007) 346–365.
- J.J. Sadhwani, M. Sagaseta de Ilurdoz, Primary energy
consumption in desalination: the case of Gran Canaria,
Desalination, 452 (2019) 219–229.
- D. Avila, R. Alesanco, J. Véliz, Sistemas híbridos con base
en las energías renovables para el suministro de energía a
plantas desaladoras, Ing. Mecánica, 14 (2011) 22–30.
- World Bank, Renewable Energy Desalination: An Emerging
Solution to Close the Water Gap in MENA Development
Report, World Bank, Washington, D.C., 2013, pp 232.
- I. Janghorban, P. Ifaei, J. Kim, C. Yoo, Design of hybrid renewable
energy systems with battery/hydrogen storage considering
practical power losses: a MEPoPA (modified extended-power
pinch analysis), Energy, 100 (2016) 40–50.
- A. Vazquez-Figueroa, El Agua Prometida, Penguin Ra.
Debolsillo Barcelona, España, 2003, p. 240.
- M.A. Elhadidy, S.M. Shaahid, Promoting applications of
hybrid (wind+photovoltaic+diesel+battery) power systems in
hot regions, Renewable Energy, 29 (2004) 517–528.
- S.A. Kalogirou, Seawater desalination using renewable
energy source, Prog. Energy Combust. Sci., 31 (2005) 242–281.
- M. Forstmeier, F. Mannerheim, F. D’Amato, M. Shah, Y. Liu,
M. Baldea, A. Stella, Feasibility study on wind-powered
desalination, Desalination, 203 (2007) 463–470.
- E.A.F.A. Fadigas, J.R. Dias, Desalination of water by reverse
osmosis using gravitational potential energy and wind energy,
Desalination, 237 (2009) 140–146.
- H. Cherif, J. Belhadj, Large-scale time evaluation for energy
estimation of stand-alone hybrid photovoltaic-wind system
feeding a reverse osmosis desalination unit, Energy, 36 (2011)
6058–6067.
- Q. Li, W. Moya, I. Janghorban, J. Rashidi, C. Yoo, Integration
of reverse osmosis desalination with hybrid renewable energy
sources and battery storage using electricity supply and
demand-driven power pinch análisis, Process Saf. Environ.
Prot., 111 (2017) 795–809.
- Ministerio de Energía, Facultad de Cs Físicas y Matemáticas
Universidad de Chile, “El Explorador Solar”, 2013. Available at:
http://ernc.dgf.uchile.cl:48080/inicio (Accessed: 2020 Aug. 22).
- R. Raineri, Transición Energética en Chile: Una Verdad
Incómoda, Clapes UC, 2018, p. 86.
- A. Beltrán, H. Gracia-León, D. Rodríguez-Urrego, L. Rodríguez-
Urrego, Design and calculation of a hybrid solar-hydraulic
power station in Gran Canaria, DYNA, 85 (2018) 250–257.
- Ministerio de Energía G de C. Ley 20.571, Regula el Pago de
Tarifas Eléctricas de las Generadoras Residenciales, 2013.
- R. Krueger, Selecting Hydraulic Reaction Turbines,
Technical Information Branch DFC, USA, 1954, p. 45.
- RETScreen, Clean Energy Managment Software, Government
of Canada, 2018. Available at https://www.nrcan.gc.ca/energy/
retscreen/7465 (Accessed: 2019 Jun 2).
- ASME B31.4, Pipeline Transportation Systems for Liquids and
Slurries, American Society of Mechanical Engineers, 2019,
p. 132.
- CYPE, Ingenieros SA, Generador de precios de la construcción,
Chile, 2019. Available at http://www.chile.generadordeprecios.
info/ (Accessed: 2019 June 11).
- Banco Central de Chile, Estadísticas, Banco Central de
Chile, 2003. Available at https://www.bcentral.cl/web/guest/
estadisticas (Accessed: 2019 July 12).
- P.F. Cárcamo, M. Cortés, L. Ortega, F.A. Squeao, C.F. Gaymer,
Chronicle of a foretold conflict: three coal-fired power plants in
a biodiversity hotspot of global significance, Rev. Chil. de Hist.
Nat., 84 (2011) 171–180.
- Ministerio de Energía, Indicadores Ambientales Factor de
Emisiones GEI del Sistema Eléctrico Nacional, 2019. Available
at https://energia.gob.cl/indicadores-ambientales-factor-deemisiones-gei-del-sistema-electrico-nacional (Accessed: 2019
June 3).