References
- I. Chaoui, I. Ndiaye, S. Abderafi, S. Vaudreuil, T. Bounahmidi,
Evaluation of FO membranes performance using a
modelling approach, Desal. Water Treat., 223 (2021) 71–98.
- M. Damirchi, I. Koyuncu, Nutrient recovery from concentrated
municipal wastewater by forward osmosis membrane and
MgCl2 based draw solution, Desal. Water Treat., 211 (2021)
448–455.
- M.H. Salih, A.F. Al-Alawy, A novel forward osmosis for
treatment of high-salinity East Baghdad oilfield produced
water as a part of a zero liquid discharge system, Desal. Water
Treat., 248 (2022) 18–27.
- A. Pervov, T. Shirkova, V. Frenkel, New technology to treat
leachate by low pressure reverse osmosis, Desal. Water Treat.,
259 (2022) 338–346.
- S. Belhamidi, S. El-Ghzizel, M. Taky, A. Elmidaoui, Nitrate
removal of groundwater by reverse osmosis, nanofiltration
and electrodialysis: performances and cost comparison,
Desal. Water Treat., 262 (2022) 230–243.
- W. Alam, M. Asif, M. Suleman, Techno-economic evaluation
of multi-stage vacuum membrane distillation (MSVMD),
Desal. Water Treat., 230 (2021) 64–79.
- B.M.B. Ensano, Y. Ahn, Reverse electrodialysis for perchlorate
abatement in salt water, Desal. Water Treat., 230 (2021)
129–135.
- W.A. Suwaileh, D.J. Johnson, S. Sarp, N. Hilal, Advances in
forward osmosis membranes: altering the sub-layer structure
via recent fabrication and chemical modification approaches,
Desalination, 436 (2018) 176–201.
- W.L. Song, S.Y. Liu, M. Xie, P. Zhao, X.H. Wang, FO process
for simultaneous wastewater pre-concentration and seawater
concentrate disposal: impacts of seawater concentrate on
membrane fouling in long-term operation, Desalination,
544 (2022) 116143, doi: 10.1016/j.desal.2022.116143.
- J.E. Kim, S. Phuntsho, S.M. Ali, J.Y. Choi, H.K. Shon, Forward
osmosis membrane modular configurations for osmotic
dilution of seawater by forward osmosis and reverse osmosis
hybrid system, Water Res., 128 (2018) 183–192.
- M.C. Yao, L. Duan, Y.H. Song, S.W. Hermanowicz, Degradation
mechanism of Ibuprofen via a forward osmosis membrane
bioreactor, Bioresour. Technol., 321 (2021) 124448, doi: 10.1016/j.biortech.2020.124448.
- Z.H. Li, S.J. Xiao, Q.M. Xiong, C.D. Wu, J. Huang, R.Q. Zhou,
Y. Jin, Assessment of highly concentrated pear juice production
through single-run forward osmosis using sodium lactate
as the draw solute, J. Food Eng., 333 (2022) 111122,
doi: 10.1016/j.jfoodeng.2022.111122.
- N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan,
Recent advancements in forward osmosis desalination:
a review, Chem. Eng. J., 281 (2015) 502–522.
- Y.Y. Fang, L.X. Bian, X.L. Wang, Understanding membrane
parameters of a forward osmosis membrane based on
nonequilibrium thermodynamics, J. Membr. Sci., 437 (2013)
72–81.
- G.L. Qiu, G.K.W. Wong, Y.P. Ting, Electrostatic interaction
governed solute transport in forward osmosis, Water Res.,
173 (2020) 115590, doi: 10.1016/j.watres.2020.115590.
- W. Cheng, X.L. Lu, Y. Yang, J. Jiang, J. Ma, Influence of
composition and concentration of saline water on cation
exchange behavior in forward osmosis desalination, Water
Res., 137 (2018) 9–17.
- S.J. You, X.H. Wang, M. Zhong, Y.J. Zhong, C. Yu, N.Q. Ren,
Temperature as a factor affecting transmembrane water flux
in forward osmosis: steady-state modeling and experimental
validation, Chem. Eng. J., 198–199 (2012) 52–60.
- Y. Kim, S. Lee, H.K. Shon, S. Hong, Organic fouling mechanisms
in forward osmosis membrane process under elevated feed
and draw solution temperatures, Desalination, 355 (2015)
169–177.
- Q. Wang, Z.Y. Zhou, J.Q. Li, Q.C. Tang, Y.X. Hu, Modeling and
measurement of temperature and draw solution concentration
induced water flux increment efficiencies in the forward
osmosis membrane process, Desalination, 452 (2019) 75–86.
- M.C.Y. Wong, K. Martinez, G.Z. Ramon, E.M.V. Hoek, Impacts
of operating conditions and solution chemistry on osmotic
membrane structure and performance, Desalination, 287 (2012)
340–349.
- M. Shibuya, M. Yasukawa, T. Takahashi, T. Miyoshi, M. Higa,
H. Matsuyama, Effect of operating conditions on osmoticdriven
membrane performances of cellulose triacetate forward
osmosis hollow fiber membrane, Desalination, 362 (2015) 34–42.
- P. Zhao, B.Y. Gao, Q.Y. Yue, S.C. Liu, H.K. Shon, Effect of
high salinity on the performance of forward osmosis: water
flux, membrane scaling and removal efficiency, Desalination,
378 (2016) 67–73.
- B. Kim, G. Gwak, S. Hong, Review on methodology for
determining forward osmosis (FO) membrane characteristics:
water permeability (A), solute permeability (B), and structural
parameter (S), Desalination, 422 (2017) 5–16.
- N.N. Bui, J.T. Arena, J.R. McCutcheon, Proper accounting
of mass transfer resistances in forward osmosis: improving
the accuracy of model predictions of structural parameter,
J. Membr. Sci., 492 (2015) 289–302.
- C. Suh, S. Lee, Modeling reverse draw solute flux in forward
osmosis with external concentration polarization in both
sides of the draw and feed solution, J. Membr. Sci., 427 (2013)
365–374.
- A. Tiraferri, N.Y. Yip, A.P. Straub, S.R.V. Castrillon, M. Elimelech,
A method for the simultaneous determination of transport
and structural parameters of forward osmosis membranes,
J. Membr. Sci., 444 (2013) 523–538.
- J. Lee, J.Y. Choi, J.S. Choi, K.H. Chu, Y. Yoon, S. Kim,
A statistics-based forward osmosis membrane characterization
method without pressurized reverse osmosis experiment,
Desalination, 403 (2017) 36–45.
- M.R. Bilad, L. Qing, A.G. Fane, Non-linear least-square fitting
method for characterization of forward osmosis membrane,
J. Water Process Eng., 25 (2018) 70–80.
- J.T. Martin, G. Kolliopoulos, V.G. Papangelakis, An
improved model for membrane characterization in forward
osmosis, J. Membr. Sci., 598 (2020) 117668, doi: 10.1016/j.memsci.2019.117668.
- W.-J. Kim, D.R. Heldman, A mathematical estimation of the
structural parameter for prediction of forward osmosis (FO)
performance, J. Water Process Eng., 39 (2020) 101719, doi:
10.1016/j.jwpe.2020.101719.
- A.K.H. D’Haese, M.M. Motsa, P. van der Meeren,
A.R.D. Verliefde, A refined draw solute flux model in forward
osmosis: theoretical considerations and experimental validation,
J. Membr. Sci., 522 (2017) 316–331.
- S. Phuntsho, S. Vigneswaran, J. Kandasamy, S. Hong,
S. Lee, H.K. Shon, Influence of temperature and temperature
difference in the performance of forward osmosis desalination
process, J. Membr. Sci., 415–416 (2012) 734–744.
- R.S. Adha, T.-T. Nguyen, C. Lee, J. Jang, I.S. Kim, An improved
perm-selectivity prediction of forward osmosis membrane
by incorporating the effect of the surface charge on the solute
partitioning, J. Membr. Sci., 629 (2021) 119303, doi: 10.1016/j.memsci.2021.119303.
- E.Y. Kim, S.C. Kim, Electrostatic interaction of charged
surfaces with semipermeable membranes, J. Korean Phys. Soc.,
68 (2016) 658–667.
- A. Martín-Molina, R. Hidalgo-Álvarez, M. Quesada-Pérez,
Additional considerations about the role of ion size in
charge reversal, J. Phys.: Condens. Matter, 21 (2009) 424105,
doi: 10.1088/0953-8984/21/42/424105.
- B.D. Coday, T. Luxbacher, A.E. Childress, N. Almaraz, P. Xu,
T.Y. Cath, Indirect determination of zeta potential at high ionic
strength: specific application to semipermeable polymeric
membranes, J. Membr. Sci., 478 (2015) 58–64.
- Z.H. Foo, D. Rehman, O.Z. Coombs, A. Deshmukh,
J.H. Lienhard V, Multicomponent Fickian solution-diffusion
model for osmotic transport through membranes, J. Membr.
Sci., 640 (2021) 119819, doi: 10.1016/j.memsci.2021.119819.
- A. Al-Amoudi, P. Williams, S. Mandale, R.W. Lovitt,
Cleaning results of new and fouled nanofiltration membrane
characterized by zeta potential and permeability, Sep. Purif.
Technol., 54 (2006) 234–240.
- V.M.M. Lobo, Mutual diffusion coefficients in aqueous
electrolyte solutions, Pure Appl. Chem., 65 (1993) 2613–2640.
- D.C. Grahame, The electrical double layer and the theory of
electrocapillarity, Chem. Rev., 41 (1947) 441–501.
- H. Ohshima, Biophysical Chemistry of Biointerfaces, John
Wiley & Sons, Japan, 2010.
- S. Muthu, A. Childress, J. Brant, Propagation-of-uncertainty
from contact angle and streaming potential measurements to
XDLVO model assessments of membrane–colloid interactions,
J. Colloid Interface Sci., 428 (2014) 191–198.
- A. Dukhin, S. Dukhin, P. Goetz, Electrokinetics at high ionic
strength and hypothesis of the double layer with zero surface
charge, Langmuir: ACS J. Surf. Colloids, 21 (2005) 9990–9997.
- R. Zimmermann, U. Freudenberg, R. Schweiß, D. Kuttner,
C. Werner, Hydroxide and hydronium ion adsorption — a
survey, Curr. Opin. Colloid Interface Sci., 15 (2010) 196–202.
- B.D. Coday, D.M. Heil, P. Xu, T.Y. Cath, Effects of transmembrane
hydraulic pressure on performance of forward osmosis
membranes, Environ. Sci. Technol., 47 (2013) 2386–2393.
- M.S. Toran, A. D’Haese, I. Rodríguez-Roda, W. Gernjak, Fouling
propensity of novel TFC membranes with different osmotic
and hydraulic pressure driving forces, Water Res., 175 (2020)
115657.
- T.-T. Nguyen, R.S. Adha, R.W. Field, I.S. Kim, Extended
performance study of forward osmosis during wastewater
reclamation: quantification of fouling-based concentration
polarization effects on the flux decline, J. Membr. Sci., 618 (2021)
118755, doi: 10.1016/j.memsci.2020.118755.
- J.C. Su, T.S. Chung, B.J. Helmer, J.S. de Wit, Understanding of
low osmotic efficiency in forward osmosis: experiments and
modeling, Desalination, 313 (2013) 156–165.
- M. Xie, W.E. Price, L.D. Nghiem, M. Elimelech, Effects of feed and
draw solution temperature and transmembrane temperature
difference on the rejection of trace organic contaminants
by forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
- M.F.A. Goosen, S.S. Sablani, S.S. Al-Maskari, R.H. Al-Belushi,
M. Wilf, Effect of feed temperature on permeate flux and
mass transfer coefficient in spiral-wound reverse osmosis
systems, Desalination, 144 (2002) 367–372.