References

  1. I. Chaoui, I. Ndiaye, S. Abderafi, S. Vaudreuil, T. Bounahmidi, Evaluation of FO membranes performance using a modelling approach, Desal. Water Treat., 223 (2021) 71–98.
  2. M. Damirchi, I. Koyuncu, Nutrient recovery from concentrated municipal wastewater by forward osmosis membrane and MgCl2 based draw solution, Desal. Water Treat., 211 (2021) 448–455.
  3. M.H. Salih, A.F. Al-Alawy, A novel forward osmosis for treatment of high-salinity East Baghdad oilfield produced water as a part of a zero liquid discharge system, Desal. Water Treat., 248 (2022) 18–27.
  4. A. Pervov, T. Shirkova, V. Frenkel, New technology to treat leachate by low pressure reverse osmosis, Desal. Water Treat., 259 (2022) 338–346.
  5. S. Belhamidi, S. El-Ghzizel, M. Taky, A. Elmidaoui, Nitrate removal of groundwater by reverse osmosis, nanofiltration and electrodialysis: performances and cost comparison, Desal. Water Treat., 262 (2022) 230–243.
  6. W. Alam, M. Asif, M. Suleman, Techno-economic evaluation of multi-stage vacuum membrane distillation (MSVMD), Desal. Water Treat., 230 (2021) 64–79.
  7. B.M.B. Ensano, Y. Ahn, Reverse electrodialysis for perchlorate abatement in salt water, Desal. Water Treat., 230 (2021) 129–135.
  8. W.A. Suwaileh, D.J. Johnson, S. Sarp, N. Hilal, Advances in forward osmosis membranes: altering the sub-layer structure via recent fabrication and chemical modification approaches, Desalination, 436 (2018) 176–201.
  9. W.L. Song, S.Y. Liu, M. Xie, P. Zhao, X.H. Wang, FO process for simultaneous wastewater pre-concentration and seawater concentrate disposal: impacts of seawater concentrate on membrane fouling in long-term operation, Desalination, 544 (2022) 116143, doi: 10.1016/j.desal.2022.116143.
  10. J.E. Kim, S. Phuntsho, S.M. Ali, J.Y. Choi, H.K. Shon, Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system, Water Res., 128 (2018) 183–192.
  11. M.C. Yao, L. Duan, Y.H. Song, S.W. Hermanowicz, Degradation mechanism of Ibuprofen via a forward osmosis membrane bioreactor, Bioresour. Technol., 321 (2021) 124448, doi: 10.1016/j.biortech.2020.124448.
  12. Z.H. Li, S.J. Xiao, Q.M. Xiong, C.D. Wu, J. Huang, R.Q. Zhou, Y. Jin, Assessment of highly concentrated pear juice production through single-run forward osmosis using sodium lactate as the draw solute, J. Food Eng., 333 (2022) 111122, doi: 10.1016/j.jfoodeng.2022.111122.
  13. N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan, Recent advancements in forward osmosis desalination: a review, Chem. Eng. J., 281 (2015) 502–522.
  14. Y.Y. Fang, L.X. Bian, X.L. Wang, Understanding membrane parameters of a forward osmosis membrane based on nonequilibrium thermodynamics, J. Membr. Sci., 437 (2013) 72–81.
  15. G.L. Qiu, G.K.W. Wong, Y.P. Ting, Electrostatic interaction governed solute transport in forward osmosis, Water Res., 173 (2020) 115590, doi: 10.1016/j.watres.2020.115590.
  16. W. Cheng, X.L. Lu, Y. Yang, J. Jiang, J. Ma, Influence of composition and concentration of saline water on cation exchange behavior in forward osmosis desalination, Water Res., 137 (2018) 9–17.
  17. S.J. You, X.H. Wang, M. Zhong, Y.J. Zhong, C. Yu, N.Q. Ren, Temperature as a factor affecting transmembrane water flux in forward osmosis: steady-state modeling and experimental validation, Chem. Eng. J., 198–199 (2012) 52–60.
  18. Y. Kim, S. Lee, H.K. Shon, S. Hong, Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures, Desalination, 355 (2015) 169–177.
  19. Q. Wang, Z.Y. Zhou, J.Q. Li, Q.C. Tang, Y.X. Hu, Modeling and measurement of temperature and draw solution concentration induced water flux increment efficiencies in the forward osmosis membrane process, Desalination, 452 (2019) 75–86.
  20. M.C.Y. Wong, K. Martinez, G.Z. Ramon, E.M.V. Hoek, Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance, Desalination, 287 (2012) 340–349.
  21. M. Shibuya, M. Yasukawa, T. Takahashi, T. Miyoshi, M. Higa, H. Matsuyama, Effect of operating conditions on osmoticdriven membrane performances of cellulose triacetate forward osmosis hollow fiber membrane, Desalination, 362 (2015) 34–42.
  22. P. Zhao, B.Y. Gao, Q.Y. Yue, S.C. Liu, H.K. Shon, Effect of high salinity on the performance of forward osmosis: water flux, membrane scaling and removal efficiency, Desalination, 378 (2016) 67–73.
  23. B. Kim, G. Gwak, S. Hong, Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S), Desalination, 422 (2017) 5–16.
  24. N.N. Bui, J.T. Arena, J.R. McCutcheon, Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter, J. Membr. Sci., 492 (2015) 289–302.
  25. C. Suh, S. Lee, Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution, J. Membr. Sci., 427 (2013) 365–374.
  26. A. Tiraferri, N.Y. Yip, A.P. Straub, S.R.V. Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci., 444 (2013) 523–538.
  27. J. Lee, J.Y. Choi, J.S. Choi, K.H. Chu, Y. Yoon, S. Kim, A statistics-based forward osmosis membrane characterization method without pressurized reverse osmosis experiment, Desalination, 403 (2017) 36–45.
  28. M.R. Bilad, L. Qing, A.G. Fane, Non-linear least-square fitting method for characterization of forward osmosis membrane, J. Water Process Eng., 25 (2018) 70–80.
  29. J.T. Martin, G. Kolliopoulos, V.G. Papangelakis, An improved model for membrane characterization in forward osmosis, J. Membr. Sci., 598 (2020) 117668, doi: 10.1016/j.memsci.2019.117668.
  30. W.-J. Kim, D.R. Heldman, A mathematical estimation of the structural parameter for prediction of forward osmosis (FO) performance, J. Water Process Eng., 39 (2020) 101719, doi: 10.1016/j.jwpe.2020.101719.
  31. A.K.H. D’Haese, M.M. Motsa, P. van der Meeren, A.R.D. Verliefde, A refined draw solute flux model in forward osmosis: theoretical considerations and experimental validation, J. Membr. Sci., 522 (2017) 316–331.
  32. S. Phuntsho, S. Vigneswaran, J. Kandasamy, S. Hong, S. Lee, H.K. Shon, Influence of temperature and temperature difference in the performance of forward osmosis desalination process, J. Membr. Sci., 415–416 (2012) 734–744.
  33. R.S. Adha, T.-T. Nguyen, C. Lee, J. Jang, I.S. Kim, An improved perm-selectivity prediction of forward osmosis membrane by incorporating the effect of the surface charge on the solute partitioning, J. Membr. Sci., 629 (2021) 119303, doi: 10.1016/j.memsci.2021.119303.
  34. E.Y. Kim, S.C. Kim, Electrostatic interaction of charged surfaces with semipermeable membranes, J. Korean Phys. Soc., 68 (2016) 658–667.
  35. A. Martín-Molina, R. Hidalgo-Álvarez, M. Quesada-Pérez, Additional considerations about the role of ion size in charge reversal, J. Phys.: Condens. Matter, 21 (2009) 424105, doi: 10.1088/0953-8984/21/42/424105.
  36. B.D. Coday, T. Luxbacher, A.E. Childress, N. Almaraz, P. Xu, T.Y. Cath, Indirect determination of zeta potential at high ionic strength: specific application to semipermeable polymeric membranes, J. Membr. Sci., 478 (2015) 58–64.
  37. Z.H. Foo, D. Rehman, O.Z. Coombs, A. Deshmukh, J.H. Lienhard V, Multicomponent Fickian solution-diffusion model for osmotic transport through membranes, J. Membr. Sci., 640 (2021) 119819, doi: 10.1016/j.memsci.2021.119819.
  38. A. Al-Amoudi, P. Williams, S. Mandale, R.W. Lovitt, Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability, Sep. Purif. Technol., 54 (2006) 234–240.
  39. V.M.M. Lobo, Mutual diffusion coefficients in aqueous electrolyte solutions, Pure Appl. Chem., 65 (1993) 2613–2640.
  40. D.C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev., 41 (1947) 441–501.
  41. H. Ohshima, Biophysical Chemistry of Biointerfaces, John Wiley & Sons, Japan, 2010.
  42. S. Muthu, A. Childress, J. Brant, Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane–colloid interactions, J. Colloid Interface Sci., 428 (2014) 191–198.
  43. A. Dukhin, S. Dukhin, P. Goetz, Electrokinetics at high ionic strength and hypothesis of the double layer with zero surface charge, Langmuir: ACS J. Surf. Colloids, 21 (2005) 9990–9997.
  44. R. Zimmermann, U. Freudenberg, R. Schweiß, D. Kuttner, C. Werner, Hydroxide and hydronium ion adsorption — a survey, Curr. Opin. Colloid Interface Sci., 15 (2010) 196–202.
  45. B.D. Coday, D.M. Heil, P. Xu, T.Y. Cath, Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes, Environ. Sci. Technol., 47 (2013) 2386–2393.
  46. M.S. Toran, A. D’Haese, I. Rodríguez-Roda, W. Gernjak, Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces, Water Res., 175 (2020) 115657.
  47. T.-T. Nguyen, R.S. Adha, R.W. Field, I.S. Kim, Extended performance study of forward osmosis during wastewater reclamation: quantification of fouling-based concentration polarization effects on the flux decline, J. Membr. Sci., 618 (2021) 118755, doi: 10.1016/j.memsci.2020.118755.
  48. J.C. Su, T.S. Chung, B.J. Helmer, J.S. de Wit, Understanding of low osmotic efficiency in forward osmosis: experiments and modeling, Desalination, 313 (2013) 156–165.
  49. M. Xie, W.E. Price, L.D. Nghiem, M. Elimelech, Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
  50. M.F.A. Goosen, S.S. Sablani, S.S. Al-Maskari, R.H. Al-Belushi, M. Wilf, Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems, Desalination, 144 (2002) 367–372.