References

  1. X. Garcia, D. Pargament, Reusing wastewater to cope with water scarcity: economic, social and environmental considerations for decision-making, Resour. Conserv. Recycl., 101 (2015) 154–166.
  2. L.S. Gaulke, On-site wastewater treatment and reuses in Japan, Proc. Inst. Civ. Eng. - Water Manage., 159 (2006) 103–109.
  3. D. Dominguez, W. Gujer, Evolution of a wastewater treatment plant challenges traditional design concepts, Water Res., 40 (2006) 1389–1396.
  4. A.T. Rosário, J.C. Días, How industry 4.0 and sensors can leverage product design: opportunities and challenges, Sensors, 23 (2023) 1165, doi: 10.3390/s23031165.
  5. M. Hermann, T. Pentek, B. Otto, Design Principles for Industries 4.0 Scenarios, 49th Hawaii International Conference on System Sciences (HICSS), 2016, pp. 3928–3937.
  6. M. Lowe, R. Qin, X. Mao, A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring, Water, 14 (2022) 1384, doi: 10.3390/w14091384.
  7. A. Najah Ahmed, O. Faridah Binti, A. Haitham Abdulmohsin, I. Rusul Khaleel, F. Chow Ming, H. Md Shabbir, M. Ehteram, A. Elshafie, Machine learning methods for better water quality prediction, J. Hydrol., 578 (2019) 124084, doi: 10.1016/j.jhydrol.2019.124084.
  8. N.H.A. Malek, W.F. Wan Yaacob, S.A. Md Nasir, N. Shaadan, Prediction of water quality classification of the Kelantan River Basin, Malaysia, using machine learning techniques, Water, 14 (2022) 1067, doi: 10.3390/w14071067.
  9. A. Korodi, R. Crisan, A. Nicolae, I. Silea, Industrial internet of things and fog computing to reduce energy consumption in drinking water facilities, Processes, 8 (2020) 282, doi: 10.3390/pr8030282.
  10. D.R. Prapti, A.R. Mohamed Shariff, H. Che Man, N.M. Ramli, T. Perumal, M. Shariff, Internet of things (IoT)-based aquaculture: an overview of IoT application on water quality monitoring, Rev. Aquacult., 14 (2022) 979–992.
  11. E. Doherty, G. McNamara, L. Fitzsimons, E. Clifford, Design and implementation of a performance assessment methodology cognisant of data accuracy for Irish Wastewater Treatment Plants, J. Cleaner Prod., 165 (2017) 1529–1541.
  12. R. Lakshmanan, M. Djama, S. Perumal, R. Abdulla, Automated smart hydroponics system using internet of things, Int. J. Electr. Comput. Eng., 10 (2020) 6389–6398.
  13. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100 (2003) 475–502.
  14. R. Divakaran, V.S. Pillai, Flocculation of kaolinite suspensions in water by chitosan, Water Res., 35 (2001) 3904–3908.
  15. M.G. Kılıç, Ç. Hoşten, A comparative study of electrocoagulation and coagulation of aqueous suspensions of kaolinite powders, J. Hazard. Mater., 176 (2010) 735–740.
  16. Z. Ferasat, R. Panahi, B. Mokhtarani, Natural polymer matrix as safe flocculant to remove turbidity from kaolin suspension: performance and governing mechanism, J. Environ. Manage., 255 (2022) 109939, doi: 10.1016/j.jenvman.2019.109939.
  17. J. Gregory, Monitoring particle aggregation processes, Adv. Colloid Interface Sci., 147–148 (2009) 109–123.
  18. R.F. Nielsen, N.A. Kermani, L. la Cour Freiesleben, K.V. Gernaey, S.S. Mansouri, Novel strategies for predictive particle monitoring and control using advanced image analysis, Comput. Aided Chem. Eng., 46 (2019) 1435–1440.
  19. S. Brad, M. Murar, G. Vlad, E. Brad, M. Popanton, Lifecycle design of disruptive SCADA systems for waste-water treatment installations, Sustainability, 13 (2021) 4950, doi: 10.3390/ su13094950.
  20. A.V. Tasamá, A.F. Ramírez Sánchez, D.M. Martínez, M.J. Alzate Silva, Aplicación didáctica para el procesamiento de imágenes digitales usando interfaz gráfica de usuario en MATLAB, Instituto Tecnológico Metropolitano de Medellín-Componentes Electrónicas, 2008, pp. 1–5. Available at https://compelect.com. co/archivos/diamatlab/2008/Aplicacion_Didactica_PRIM.pdf
  21. P. French, Hausdorff Dimension by the Box Counting Method, MATLAB Central File Exchange, 2022. Available at: https:// www.mathworks.com/matlabcentral/fileexchange/15918-hausdorff-dimension-by-the-box-counting-method
  22. A. Napolitano, S. Ungania, V. Cannata, Fractal Dimension Estimation Methods for Biomedical Images, V.N. Katsikis, Ed., MATLAB–A Fundamental Tool for Scientific Computing and Engineering Applications, IntechOpen, 2012, pp. 161–178.
  23. H. Zheng, G. Zhu, S. Jiang, T. Tshukudu, X. Xiang, P. Zhang, Q. He, Investigations of coagulation–flocculation process by performance optimization, model prediction and fractal structure of flocs, Desalination, 269 (2011) 148–156.
  24. J. Li, Q. Du, C. Sun, An improved box-counting method for image fractal dimension estimation, Pattern Recognit., 42 (2009) 2460–2469.
  25. F. Moisy, Boxcount, MATLAB Central File Exchange, 2022. Available at https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount
  26. J. Ren, S.D. Lee, X. Chen, B. Kao, R. Cheng, D. Cheung, Naive Bayes Classification of Uncertain Data, 9th IEEE International Conference on Data Mining, Miami Beach, FL, USA, 2009, pp. 944–949.
  27. E. Kravaritis, C. Sourkounis, Efficiency Analysis of Pumps Drives for Space Vector PWM and Hysteresis Band PWM With on Operation Transaction of the Control Method, 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 2017, pp. 473–477.
  28. J.S. Kumar, P. Poongodi, P. Balakumaran, Artificial intelligencebased alum dosage control in water treatment plant, Int. J. Eng. Technol., 5 (2013) 3344–3350.
  29. D. Cruz, M. Pimentel, A. Russo, W. Cabral, Charge neutralization mechanism efficiency in water with high color turbidity ratio using aluminium sulfate and flocculation index, Water, 12 (2020) 572, doi: 10.3390/w12020572.
  30. S. Sun, M. Weber-Shirk, L.W. Lion, Characterization of flocs and floc size distributions using image analysis, Environ. Eng. Sci., 33 (2016) 25–34.
  31. M.R. MacIver, M. Pawlik, Analysis of in situ microscopy images of flocculated sediment volumes, Chem. Eng. Technol., 40 (2017) 2305–2313.
  32. A. Vahedi, B. Gorczyca, Application of fractal dimensions to study the structure of flocs formed in lime softening process, Water Res., 45 (2011) 545–556.
  33. J. Yu, D. Wang, X. Ge, M. Yan, M. Yang, Flocculation of kaolin particles by two typical polyelectrolytes: a comparative study on the kinetics and floc structures, Colloids Surf., A, 290 (2006) 288–294.
  34. C. Ying, L. Qian-Jun, Z. Jin-Song, Flocculation control study based on fractal theory, J. Zhejiang Univ. Sci. B, 6 (2005) 1038–1044.
  35. B. Liu, F. Qu, W. Chen, H. Liang, T. Wang, X. Cheng, H. Yu, G. Li, B. Van der Bruggen, Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: comparison of the simultaneous and successive oxidant dosing strategy, Water Res., 125 (2017) 72–80.
  36. F. Niu, H. Zhang, J. Zhang, X. Yu, Temperature variation characteristics and model optimization of flocculation sedimentation of overflow ultra-fine iron tailings, Minerals, 12 (2022) 643, doi: 10.3390/min12050643.
  37. S. Nieto, N. Toro, P. Robles, E. Gálvez, S. Gallegos, R.I. Jeldres, Flocculation of clay-based tailings: differences of kaolin and sodium montmorillonite in salt medium, Materials, 15 (2022) 1156, doi: 10.3390/ma15031156.
  38. W. Dongsheng, C. Chang, M. Kaiwei, L. Zhixuan, D. Deng, Estimating effluent turbidity in the drinking water flocculation process with an improved random forest model, Water Supply, 22 (2022) 1107–1119.