References
- X. Garcia, D. Pargament, Reusing wastewater to cope
with water scarcity: economic, social and environmental
considerations for decision-making, Resour. Conserv. Recycl.,
101 (2015) 154–166.
- L.S. Gaulke, On-site wastewater treatment and reuses in Japan,
Proc. Inst. Civ. Eng. - Water Manage., 159 (2006) 103–109.
- D. Dominguez, W. Gujer, Evolution of a wastewater treatment
plant challenges traditional design concepts, Water Res.,
40 (2006) 1389–1396.
- A.T. Rosário, J.C. Días, How industry 4.0 and sensors can
leverage product design: opportunities and challenges,
Sensors, 23 (2023) 1165, doi: 10.3390/s23031165.
- M. Hermann, T. Pentek, B. Otto, Design Principles for Industries
4.0 Scenarios, 49th Hawaii International Conference on
System Sciences (HICSS), 2016, pp. 3928–3937.
- M. Lowe, R. Qin, X. Mao, A review on machine learning,
artificial intelligence, and smart technology in water treatment
and monitoring, Water, 14 (2022) 1384, doi: 10.3390/w14091384.
- A. Najah Ahmed, O. Faridah Binti, A. Haitham Abdulmohsin,
I. Rusul Khaleel, F. Chow Ming, H. Md Shabbir, M. Ehteram,
A. Elshafie, Machine learning methods for better water
quality prediction, J. Hydrol., 578 (2019) 124084, doi: 10.1016/j.jhydrol.2019.124084.
- N.H.A. Malek, W.F. Wan Yaacob, S.A. Md Nasir, N. Shaadan,
Prediction of water quality classification of the Kelantan River
Basin, Malaysia, using machine learning techniques, Water,
14 (2022) 1067, doi: 10.3390/w14071067.
- A. Korodi, R. Crisan, A. Nicolae, I. Silea, Industrial internet of
things and fog computing to reduce energy consumption in
drinking water facilities, Processes, 8 (2020) 282, doi: 10.3390/pr8030282.
- D.R. Prapti, A.R. Mohamed Shariff, H. Che Man, N.M. Ramli,
T. Perumal, M. Shariff, Internet of things (IoT)-based aquaculture:
an overview of IoT application on water quality monitoring,
Rev. Aquacult., 14 (2022) 979–992.
- E. Doherty, G. McNamara, L. Fitzsimons, E. Clifford,
Design and implementation of a performance assessment
methodology cognisant of data accuracy for Irish Wastewater
Treatment Plants, J. Cleaner Prod., 165 (2017) 1529–1541.
- R. Lakshmanan, M. Djama, S. Perumal, R. Abdulla, Automated
smart hydroponics system using internet of things, Int. J. Electr.
Comput. Eng., 10 (2020) 6389–6398.
- J. Duan, J. Gregory, Coagulation by hydrolysing metal salts,
Adv. Colloid Interface Sci., 100 (2003) 475–502.
- R. Divakaran, V.S. Pillai, Flocculation of kaolinite suspensions
in water by chitosan, Water Res., 35 (2001) 3904–3908.
- M.G. Kılıç, Ç. Hoşten, A comparative study of electrocoagulation
and coagulation of aqueous suspensions of kaolinite
powders, J. Hazard. Mater., 176 (2010) 735–740.
- Z. Ferasat, R. Panahi, B. Mokhtarani, Natural polymer matrix
as safe flocculant to remove turbidity from kaolin suspension:
performance and governing mechanism, J. Environ. Manage.,
255 (2022) 109939, doi: 10.1016/j.jenvman.2019.109939.
- J. Gregory, Monitoring particle aggregation processes, Adv.
Colloid Interface Sci., 147–148 (2009) 109–123.
- R.F. Nielsen, N.A. Kermani, L. la Cour Freiesleben,
K.V. Gernaey, S.S. Mansouri, Novel strategies for predictive
particle monitoring and control using advanced image analysis,
Comput. Aided Chem. Eng., 46 (2019) 1435–1440.
- S. Brad, M. Murar, G. Vlad, E. Brad, M. Popanton, Lifecycle
design of disruptive SCADA systems for waste-water treatment
installations, Sustainability, 13 (2021) 4950, doi: 10.3390/
su13094950.
- A.V. Tasamá, A.F. Ramírez Sánchez, D.M. Martínez, M.J. Alzate
Silva, Aplicación didáctica para el procesamiento de imágenes
digitales usando interfaz gráfica de usuario en MATLAB,
Instituto Tecnológico Metropolitano de Medellín-Componentes
Electrónicas, 2008, pp. 1–5. Available at https://compelect.com.
co/archivos/diamatlab/2008/Aplicacion_Didactica_PRIM.pdf
- P. French, Hausdorff Dimension by the Box Counting Method,
MATLAB Central File Exchange, 2022. Available at: https://
www.mathworks.com/matlabcentral/fileexchange/15918-hausdorff-dimension-by-the-box-counting-method
- A. Napolitano, S. Ungania, V. Cannata, Fractal Dimension
Estimation Methods for Biomedical Images, V.N. Katsikis, Ed.,
MATLAB–A Fundamental Tool for Scientific Computing and
Engineering Applications, IntechOpen, 2012, pp. 161–178.
- H. Zheng, G. Zhu, S. Jiang, T. Tshukudu, X. Xiang, P. Zhang,
Q. He, Investigations of coagulation–flocculation process
by performance optimization, model prediction and fractal
structure of flocs, Desalination, 269 (2011) 148–156.
- J. Li, Q. Du, C. Sun, An improved box-counting method for
image fractal dimension estimation, Pattern Recognit., 42 (2009)
2460–2469.
- F. Moisy, Boxcount, MATLAB Central File Exchange, 2022.
Available at https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount
- J. Ren, S.D. Lee, X. Chen, B. Kao, R. Cheng, D. Cheung, Naive
Bayes Classification of Uncertain Data, 9th IEEE International
Conference on Data Mining, Miami Beach, FL, USA, 2009,
pp. 944–949.
- E. Kravaritis, C. Sourkounis, Efficiency Analysis of Pumps
Drives for Space Vector PWM and Hysteresis Band PWM
With on Operation Transaction of the Control Method, 25th
Mediterranean Conference on Control and Automation (MED),
Valletta, Malta, 2017, pp. 473–477.
- J.S. Kumar, P. Poongodi, P. Balakumaran, Artificial intelligencebased
alum dosage control in water treatment plant, Int. J. Eng.
Technol., 5 (2013) 3344–3350.
- D. Cruz, M. Pimentel, A. Russo, W. Cabral, Charge
neutralization mechanism efficiency in water with high color
turbidity ratio using aluminium sulfate and flocculation
index, Water, 12 (2020) 572, doi: 10.3390/w12020572.
- S. Sun, M. Weber-Shirk, L.W. Lion, Characterization of flocs and
floc size distributions using image analysis, Environ. Eng. Sci.,
33 (2016) 25–34.
- M.R. MacIver, M. Pawlik, Analysis of in situ microscopy
images of flocculated sediment volumes, Chem. Eng. Technol.,
40 (2017) 2305–2313.
- A. Vahedi, B. Gorczyca, Application of fractal dimensions to
study the structure of flocs formed in lime softening process,
Water Res., 45 (2011) 545–556.
- J. Yu, D. Wang, X. Ge, M. Yan, M. Yang, Flocculation of kaolin
particles by two typical polyelectrolytes: a comparative study
on the kinetics and floc structures, Colloids Surf., A, 290 (2006)
288–294.
- C. Ying, L. Qian-Jun, Z. Jin-Song, Flocculation control study
based on fractal theory, J. Zhejiang Univ. Sci. B, 6 (2005)
1038–1044.
- B. Liu, F. Qu, W. Chen, H. Liang, T. Wang, X. Cheng, H. Yu,
G. Li, B. Van der Bruggen, Microcystis aeruginosa-laden water
treatment using enhanced coagulation by persulfate/Fe(II),
ozone and permanganate: comparison of the simultaneous and
successive oxidant dosing strategy, Water Res., 125 (2017) 72–80.
- F. Niu, H. Zhang, J. Zhang, X. Yu, Temperature variation
characteristics and model optimization of flocculation
sedimentation of overflow ultra-fine iron tailings, Minerals,
12 (2022) 643, doi: 10.3390/min12050643.
- S. Nieto, N. Toro, P. Robles, E. Gálvez, S. Gallegos, R.I. Jeldres,
Flocculation of clay-based tailings: differences of kaolin and
sodium montmorillonite in salt medium, Materials, 15 (2022)
1156, doi: 10.3390/ma15031156.
- W. Dongsheng, C. Chang, M. Kaiwei, L. Zhixuan, D. Deng,
Estimating effluent turbidity in the drinking water flocculation
process with an improved random forest model, Water
Supply, 22 (2022) 1107–1119.