References
- National Food Safety Standard for the Use of Food Additives,
National Health and Family Planning Commission of PRC,
Beijing, 2014 (in Chinese).
- Y. Wang, S. Chen, Q. Liu, Y. Zhang, Y. Li, J. Huang, X. Chen,
L. Chen, Y. Liu, J. Huang and T. Wu, Research on the source and
treatment of candied waste-water, IOP Conf. Ser.: Earth Environ.
Sci., 514 (2020) 052041, doi: 10.1088/1755-1315/514/5/052041.
- S. Yan, X. Zhan, T. Lu, L. Li, Determination of oxidation rate
constants of antioxidants sodium sulfite, sodium bisulfite
and sodium pyrosulfite, Acta Chim. Sin., 64 (2006) 496–500
(in Chinese).
- J. Simon, P.M.H. Kroneck, Microbial Sulfite Respiration,
R.K. Poole, Ed., Advances in Microbial Physiology, Academic
Press Inc., London, 2013, pp. 45–117.
- H. Sun, Z. Gong, X. Xi, J. Zhao, Z. Zhou, Chemical treatment of
sodium metabisulfite in juice wastewater, J. Qingdao Technol.
Univ., 34 (2013) 76–80 (in Chinese).
- M. Frank, E. Horst, J.W. Klaus, Kinetics of the oxidation
of hydrogen sulfite by hydrogen peroxide in aqueous
solution: ionic strength effects and temperature dependence,
Atmos. Environ., 33 (1999) 4413–4419.
- R. Han, X.H. Fang, Y.H. Song, L. Wang, Y. Lu, H.P. Ma, H. Xiao,
L. Shao, Study on the oxidation of ammonium sulfite by ozone
in a rotating packed bed, Chem. Eng. Process. Process Intensif.,
173 (2022) 108820, doi: 10.1016/j.cep.2022.108820.
- R. Pulicharla, F. Proulx, S. Behmel, J.B. Serodes, M.J. Rodriguez,
Trends in ozonation disinfection by-products—occurrence,
analysis and toxicity of carboxylic acids, Water, 12 (2020) 756,
doi: 10.3390/w12030756.
- M.O. Sunday, W.A. Jadoon, T.T. Ayeni, Y. Iwamoto, K. Takeda,
Y. Imaizumi, T. Arakaki, H. Sakugawa, Heterogeneity and
potential aquatic toxicity of hydrogen peroxide concentrations
in selected rivers across Japan, Sci. Total Environ., 733 (2020)
139349, doi: 10.1016/j.scitotenv.2020.139349.
- W. Wu, X. Zhao, G. Jing, Z. Zhou, Efficient activation of
sulfite autoxidation process with copper oxides for iohexol
degradation under mild conditions, Sci. Total Environ.,
695 (2019) 133836, doi: 10.1016/j.scitotenv.2019.133836.
- Q. Li, L. Wang, Y. Zhao, Y. Ma, S. Cui, S. Liu, P. Xu, J. Hao,
Oxidation rate of magnesium sulfite catalyzed by cobalt ions,
Environ. Sci. Technol., 48 (2014) 4145–4152.
- C. Brandt, I. Fabian, R. Vaneldik, Kinetics and mechanism of
the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in
aqueous solution. evidence for the redox cycling of iron in
the presence of oxygen and modeling of the overall reaction
mechanism, Inorg. Chem., 33 (1994) 687–701.
- A.N. Yermakov, Sulfite oxidation catalyzed by manganese(II)
ions: reaction kinetics in excess of metal ions, Kinet. Catal.,
62 (2021) 565–572.
- D. Karatza, M. Prisciandaro, A. Lancia, D. Musmarra, Reaction
rate of sulfite oxidation catalyzed by cuprous ions, Chem. Eng.
J., 145 (2008) 285–289.
- A.N. Yermakov, I.K. Larin, A.A. Ugarov, A.P. Purmal, Iron
catalysis of SO2 oxidation in the atmosphere, Kinet. Catal.,
44 (2003) 476–489.
- Y. Mei, J. Zeng, M. Sun, J. Ma, S. Komarneni, A novel Fenton-like
system of Fe2O3 and NaHSO3 for Orange II degradation,
Sep. Purif. Technol., 230 (2020) 115866, doi: 10.1016/j.
seppur.2019.115866.
- L. Chen, X. Huang, M. Tang, D. Zhou, F. Wu, Rapid
dephosphorylation of glyphosate by Cu-catalyzed sulfite
oxidation involving sulfate and hydroxyl radicals, Environ.
Chem. Lett., 16 (2018) 1507–1511.
- E. Asgari, F. Mohammadi, H. Nourmoradi, A. Sheikhmohammadi,
Z. Rostamifasih, B. Hashemzadeh, H. Arfaeinia,
Heterogeneous catalytic degradation of nonylphenol using
persulphate activated by natural pyrite: response surface
methodology modelling and optimisation, Int. J. Environ. Anal.
Chem., 102 (2022) 6041–6060.
- A. Sheikhmohammadi, E. Asgari, H. Nourmoradi,
M.M. Fazli, M. Yeganeh, Ultrasound-assisted decomposition
of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst:
Influencing factors and mechanisms, J. Environ. Chem. Eng.,
9 (2021) 105844, doi: 10.1016/j.jece.2021.105844.
- H. Alamgholiloo, S. Nazari, E. Asgari, A. Sheikhmohammadi,
B. Hashemzadeh, N. Ghasemian, M. Bigdeloo, A. Ehsani, Facile
fabrication of Z-scheme TiO2/ZnO@MCM-41 heterojunctions
nanostructures for photodegradation and bioactivity
performance, J. Mol. Liq., 364 (2022) 119990, doi: 10.1016/j.molliq.2022.119990.
- H. Alamgholiloo, E. Asgari, S. Nazari, A. Sheikhmohammadi,
N. Noroozi Pesyan, B. Hashemzadeh, Architecture of bimetallic-MOF/silicate derived Co/NC@mSiO2 as peroxymonosulfate
activator for highly efficient ciprofloxacin degradation,
Sep. Purif. Technol., 300 (2022) 121911, doi: 10.1016/j.seppur.2022.121911.
- Y. Wang, S. Gao, X. He, Y. Li, Y. Zhang, W. Chen, Response of
total phenols, flavonoids, minerals, and amino acids of four
edible fern species to four shading treatments, PeerJ, 8 (2020)
1–18.
- R.E. Humphrey, M.H. Ward, W. Hinze, Spectrophotometric
determination of sulfite with 4,4’-dithio-dipyridine and
5,5’-dithiobis(2-nitrobenzoic acid), Anal. Chem., 42 (1970)
698–702.
- B. Jiang, Y. Liu, J. Zheng, M. Tan, Z. Wang, M. Wu, Synergetic
transformations of multiple pollutants driven by Cr(VI)–sulfite
reactions, Environ. Sci. Technol., 49 (2015) 12363–12371.
- X. Zhao, W. Wu, Y. Yan, Efficient abatement of an iodinated
X-ray contrast media iohexol by Co(II) or Cu(II) activated
sulfite autoxidation process, Environ. Sci. Pollut. Res., 26 (2019)
24707–24719.
- A.A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, DNA-based
biosensor for comparative study of catalytic effect of transition
metals on autoxidation of sulfite, Anal. Chem., 85 (2013)
991–997.
- I.D. Barbosa Segundo, T.F.C.V. Silva, F.C. Moreira, G.V. Silva,
R.A.R. Boaventura, V.J.P. Vilar, Sulphur compounds removal
from an industrial landfill leachate by catalytic oxidation
and chemical precipitation: from a hazardous effluent to a
value-added product, Sci. Total Environ., 655 (2019) 1249–1260.
- M.R. Reda, J.N. Alhajji, A comparative study of common
metals scavenging efficiency for aqueous sulfide or sulfite
pollutants in salt solution, Desalination, 94 (1994) 273–288.
- C. Brandt, R. VanEldik, The formation of dithionate during
the iron(III)-catalysed autoxidation of sulfur(IV)-oxides,
Atmos. Environ., 31 (1997) 4247–4249.
- G. Lente, I. Fabian, Effect of dissolved oxygen on the
oxidation of dithionate ion. Extremely unusual kinetic traces,
Inorg. Chem., 43 (2004) 4019–4025.
- Q. Xiao, S. Yu, The role of dissolved oxygen in the sulfite/divalent transition metal ion system: degradation performances
and mechanisms, Chem. Eng. J., 417 (2021) 129115,
doi: 10.1016/j.cej.2021.129115.
- H. Dong, G. Wei, D. Yin, X. Guan, Mechanistic insight into
the generation of reactive oxygen species in sulfite activation
with Fe(III) for contaminants degradation, J. Hazard.
Mater., 384 (2020) 121497, doi: 10.1016/j.jhazmat.2019.121497.
- Z. Liu, Y. Guo, R. Shang, Z. Fang, F. Wu, Z. Wang, A triple system
of Fe(III)/sulfite/persulfate: decolorization and mineralization of
reactive Brilliant Red X-3B in aqueous solution at near-neutral
pH values, J. Taiwan Inst. Chem. Eng., 68 (2016) 162–168.
- Z. Zhou, J. Huang, G. Zeng, R. Yang, Z. Xu, Z. Zhou, S. Lyu,
Insights into the removal of organic contaminants by calcium
sulfite activation with Fe(III): performance, kinetics, and
mechanisms, Water Res., 221 (2022) 118792, doi: 10.1016/j.watres.2022.118792.
- Y. Yu, S. Li, X. Peng, S. Yang, Y. Zhu, L. Chen, F. Wu,
G. Mailhot, Efficient oxidation of bisphenol A with oxysulfur
radicals generated by iron-catalyzed autoxidation of sulfite at
circumneutral pH under UV irradiation, Environ. Chem. Lett.,
14 (2016) 527–532.
- E.E. Daugherty, B. Gilbert, P.S. Nico, T. Borch, Complexation
and redox buffering of iron(II) by dissolved organic matter,
Environ. Sci. Technol., 51 (2017) 11096–11104.
- W. Pasiuk-Bronikowska, T. Bronikowski, M. Ulejczyk,
Synergy in the autoxidation of S(IV) inhibited by phenolic
compounds, J. Phys. Chem. A, 107 (2003) 1742–1748.
- L.R. Martin, M.W. Hill, A.F. Tai, T.W. Good, The iron catalyzed
oxidation of sulfur(IV) in aqueous solution: differing effects
of organics at high and low pH, J. Geophys. Res.: Atmos.,
96 (1991) 3085–3097.
- V.K. Meena, Y. Dhayal, D.S. Rathore, C.P.S. Chandel,
K.S. Gupta, Inhibition of aquated sulfur dioxide autoxidation
by aliphatic, acyclic, aromatic, and heterocyclic volatile organic
compounds, Int. J. Chem. Kinet., 49 (2017) 221–233.
- Y. Guo, X. Lou, C. Fang, D. Xiao, Z. Wang, J. Liu, Novel
photo-sulfite system: toward simultaneous transformations
of inorganic and organic pollutants, Environ. Sci. Technol.,
47 (2013) 11174–11181.
- Q. Lai, Y. Zhang, B. Liang, C. Gong, Study on catalytic oxidation
of S(IV) in acid Fe(III) aqueous solution, Acta Sci. Circum.,
(2004) 1091–1097 (in Chinese).
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of
inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data,
17 (1988) 1027–1284.
- G.V. Buxton, S. McGowan, G.A. Salmon, J.E. Williams,
N.D. Woods, A study of the spectra and reactivity of
oxysulphur-radical anions involved in the chain oxidation of
S(IV): a pulse and gamma-radiolysis study, Atmos. Environ.,
30 (1996) 2483–2493.
- A.N. Yermakov, A.P. Purmal, Iron-catalyzed oxidation of
sulfite: from established results to a new understanding,
Prog. React. Kinet. Mech., 28 (2003) 189–255.
- E. Kálmán, T. Radnai, G. Pálinkás, F. Hajdu, A. Vértes,
Hydration of iron(II) ion in aqueous solutions, Electrochim.
Acta, 33 (1988) 1223–1228.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous
solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
- C. Brandt, R. Vaneldik, Transition metal-catalyzed oxidation
of sulfur(IV) oxides. Atmospheric-relevant processes and
mechanisms, Chem. Rev., 95 (1995) 119–190.
- M.H. Conklin, M.R. Hoffmann, Metal ion-sulfur(IV) chemistry.
3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes, Environ. Sci. Technol., 22 (1988) 899–907.
- J. Kraft, R. Vaneldik, The possible role of iron(III)-sulfur(IV)
complexes in the catalyzed autoxidation of sulfur(IV)-oxides.
A mechanistic investigation, Atmos. Environ., 23 (1989)
2709–2713.
- E.A. Betterton, M.R. Hoffmann, Oxidation of aqueous sulfur
dioxide by peroxymonosulfate, J. Phys. Chem., 92 (1988)
5962–5965.
- M. Fischer, P. Warneck, Photodecomposition and photooxidation
of hydrogen sulfite in aqueous solution, J. Phys.
Chem., 100 (1996) 15111–15117.
- A.F. Gil, L. Salgado, L. Galicia, I. Gonzalez, Predominancezone
diagrams of Fe(III) and Fe(II) sulfate complexes in
acidic media. Voltammetric and spectrophotometric studies,
Talanta, 42 (1995) 407–414.
- Y. Yuan, T. Luo, J. Xu, J. Li, F. Wu, M. Brigante, G. Mailhot,
Enhanced oxidation of aniline using Fe(III)–S(IV) system: role of
different oxysulfur radicals, Chem. Eng. J., 362 (2019) 183–189.
- Y. Gao, W. Fan, Z. Zhang, Y. Zhou, Z. Zeng, K. Yan, J. Ma,
K. Hanna, Transformation mechanisms of iopamidol by iron/sulfite systems: involvement of multiple reactive species and
efficiency in real water, J. Hazard. Mater., 426 (2022) 128114,
doi: 10.1016/j.jhazmat.2021.128114.
- C. Maharaj, J. Chivavava, A. Lewis, Treatment of a highlyconcentrated
sulphate-rich synthetic wastewater using calcium
hydroxide in a fluidised bed crystallizer, J. Environ. Manage.,
207 (2018) 378–386.
- B.M. Esteves, C.S.D. Rodrigues, F.J. Maldonado-Hodar,
L.M. Madeira, Treatment of high-strength olive mill wastewater
by combined Fenton-like oxidation and coagulation/flocculation, J. Environ. Chem. Eng., 7 (2019) 103252,
doi: 10.1016/j.jece.2019.103252.
- K. Zhang, The Effect of Iron Ion Concentration in Wastewater
on Activated Sludge Yield, Lanzhou Univ. Technol., 2020
(in Chinese).
- S. Miao, B. Yu, Y. Ren, C. Cai, Solubility and physical properties
of calcium sulfate dihydrate in NaCl and glycerol aqueous
solution at 303.15, 323.15, and 343.15 K, J. Chem. Eng. Data,
65 (2020) 2703–2711.