References

  1. National Food Safety Standard for the Use of Food Additives, National Health and Family Planning Commission of PRC, Beijing, 2014 (in Chinese).
  2. Y. Wang, S. Chen, Q. Liu, Y. Zhang, Y. Li, J. Huang, X. Chen, L. Chen, Y. Liu, J. Huang and T. Wu, Research on the source and treatment of candied waste-water, IOP Conf. Ser.: Earth Environ. Sci., 514 (2020) 052041, doi: 10.1088/1755-1315/514/5/052041.
  3. S. Yan, X. Zhan, T. Lu, L. Li, Determination of oxidation rate constants of antioxidants sodium sulfite, sodium bisulfite and sodium pyrosulfite, Acta Chim. Sin., 64 (2006) 496–500 (in Chinese).
  4. J. Simon, P.M.H. Kroneck, Microbial Sulfite Respiration, R.K. Poole, Ed., Advances in Microbial Physiology, Academic Press Inc., London, 2013, pp. 45–117.
  5. H. Sun, Z. Gong, X. Xi, J. Zhao, Z. Zhou, Chemical treatment of sodium metabisulfite in juice wastewater, J. Qingdao Technol. Univ., 34 (2013) 76–80 (in Chinese).
  6. M. Frank, E. Horst, J.W. Klaus, Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution: ionic strength effects and temperature dependence, Atmos. Environ., 33 (1999) 4413–4419.
  7. R. Han, X.H. Fang, Y.H. Song, L. Wang, Y. Lu, H.P. Ma, H. Xiao, L. Shao, Study on the oxidation of ammonium sulfite by ozone in a rotating packed bed, Chem. Eng. Process. Process Intensif., 173 (2022) 108820, doi: 10.1016/j.cep.2022.108820.
  8. R. Pulicharla, F. Proulx, S. Behmel, J.B. Serodes, M.J. Rodriguez, Trends in ozonation disinfection by-products—occurrence, analysis and toxicity of carboxylic acids, Water, 12 (2020) 756, doi: 10.3390/w12030756.
  9. M.O. Sunday, W.A. Jadoon, T.T. Ayeni, Y. Iwamoto, K. Takeda, Y. Imaizumi, T. Arakaki, H. Sakugawa, Heterogeneity and potential aquatic toxicity of hydrogen peroxide concentrations in selected rivers across Japan, Sci. Total Environ., 733 (2020) 139349, doi: 10.1016/j.scitotenv.2020.139349.
  10. W. Wu, X. Zhao, G. Jing, Z. Zhou, Efficient activation of sulfite autoxidation process with copper oxides for iohexol degradation under mild conditions, Sci. Total Environ., 695 (2019) 133836, doi: 10.1016/j.scitotenv.2019.133836.
  11. Q. Li, L. Wang, Y. Zhao, Y. Ma, S. Cui, S. Liu, P. Xu, J. Hao, Oxidation rate of magnesium sulfite catalyzed by cobalt ions, Environ. Sci. Technol., 48 (2014) 4145–4152.
  12. C. Brandt, I. Fabian, R. Vaneldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism, Inorg. Chem., 33 (1994) 687–701.
  13. A.N. Yermakov, Sulfite oxidation catalyzed by manganese(II) ions: reaction kinetics in excess of metal ions, Kinet. Catal., 62 (2021) 565–572.
  14. D. Karatza, M. Prisciandaro, A. Lancia, D. Musmarra, Reaction rate of sulfite oxidation catalyzed by cuprous ions, Chem. Eng. J., 145 (2008) 285–289.
  15. A.N. Yermakov, I.K. Larin, A.A. Ugarov, A.P. Purmal, Iron catalysis of SO2 oxidation in the atmosphere, Kinet. Catal., 44 (2003) 476–489.
  16. Y. Mei, J. Zeng, M. Sun, J. Ma, S. Komarneni, A novel Fenton-like system of Fe2O3 and NaHSO3 for Orange II degradation, Sep. Purif. Technol., 230 (2020) 115866, doi: 10.1016/j. seppur.2019.115866.
  17. L. Chen, X. Huang, M. Tang, D. Zhou, F. Wu, Rapid dephosphorylation of glyphosate by Cu-catalyzed sulfite oxidation involving sulfate and hydroxyl radicals, Environ. Chem. Lett., 16 (2018) 1507–1511.
  18. E. Asgari, F. Mohammadi, H. Nourmoradi, A. Sheikhmohammadi, Z. Rostamifasih, B. Hashemzadeh, H. Arfaeinia, Heterogeneous catalytic degradation of nonylphenol using persulphate activated by natural pyrite: response surface methodology modelling and optimisation, Int. J. Environ. Anal. Chem., 102 (2022) 6041–6060.
  19. A. Sheikhmohammadi, E. Asgari, H. Nourmoradi, M.M. Fazli, M. Yeganeh, Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms, J. Environ. Chem. Eng., 9 (2021) 105844, doi: 10.1016/j.jece.2021.105844.
  20. H. Alamgholiloo, S. Nazari, E. Asgari, A. Sheikhmohammadi, B. Hashemzadeh, N. Ghasemian, M. Bigdeloo, A. Ehsani, Facile fabrication of Z-scheme TiO2/ZnO@MCM-41 heterojunctions nanostructures for photodegradation and bioactivity performance, J. Mol. Liq., 364 (2022) 119990, doi: 10.1016/j.molliq.2022.119990.
  21. H. Alamgholiloo, E. Asgari, S. Nazari, A. Sheikhmohammadi, N. Noroozi Pesyan, B. Hashemzadeh, Architecture of bimetallic-MOF/silicate derived Co/NC@mSiO2 as peroxymonosulfate activator for highly efficient ciprofloxacin degradation, Sep. Purif. Technol., 300 (2022) 121911, doi: 10.1016/j.seppur.2022.121911.
  22. Y. Wang, S. Gao, X. He, Y. Li, Y. Zhang, W. Chen, Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments, PeerJ, 8 (2020) 1–18.
  23. R.E. Humphrey, M.H. Ward, W. Hinze, Spectrophotometric determination of sulfite with 4,4’-dithio-dipyridine and 5,5’-dithiobis(2-nitrobenzoic acid), Anal. Chem., 42 (1970) 698–702.
  24. B. Jiang, Y. Liu, J. Zheng, M. Tan, Z. Wang, M. Wu, Synergetic transformations of multiple pollutants driven by Cr(VI)–sulfite reactions, Environ. Sci. Technol., 49 (2015) 12363–12371.
  25. X. Zhao, W. Wu, Y. Yan, Efficient abatement of an iodinated X-ray contrast media iohexol by Co(II) or Cu(II) activated sulfite autoxidation process, Environ. Sci. Pollut. Res., 26 (2019) 24707–24719.
  26. A.A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, DNA-based biosensor for comparative study of catalytic effect of transition metals on autoxidation of sulfite, Anal. Chem., 85 (2013) 991–997.
  27. I.D. Barbosa Segundo, T.F.C.V. Silva, F.C. Moreira, G.V. Silva, R.A.R. Boaventura, V.J.P. Vilar, Sulphur compounds removal from an industrial landfill leachate by catalytic oxidation and chemical precipitation: from a hazardous effluent to a value-added product, Sci. Total Environ., 655 (2019) 1249–1260.
  28. M.R. Reda, J.N. Alhajji, A comparative study of common metals scavenging efficiency for aqueous sulfide or sulfite pollutants in salt solution, Desalination, 94 (1994) 273–288.
  29. C. Brandt, R. VanEldik, The formation of dithionate during the iron(III)-catalysed autoxidation of sulfur(IV)-oxides, Atmos. Environ., 31 (1997) 4247–4249.
  30. G. Lente, I. Fabian, Effect of dissolved oxygen on the oxidation of dithionate ion. Extremely unusual kinetic traces, Inorg. Chem., 43 (2004) 4019–4025.
  31. Q. Xiao, S. Yu, The role of dissolved oxygen in the sulfite/divalent transition metal ion system: degradation performances and mechanisms, Chem. Eng. J., 417 (2021) 129115, doi: 10.1016/j.cej.2021.129115.
  32. H. Dong, G. Wei, D. Yin, X. Guan, Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(III) for contaminants degradation, J. Hazard. Mater., 384 (2020) 121497, doi: 10.1016/j.jhazmat.2019.121497.
  33. Z. Liu, Y. Guo, R. Shang, Z. Fang, F. Wu, Z. Wang, A triple system of Fe(III)/sulfite/persulfate: decolorization and mineralization of reactive Brilliant Red X-3B in aqueous solution at near-neutral pH values, J. Taiwan Inst. Chem. Eng., 68 (2016) 162–168.
  34. Z. Zhou, J. Huang, G. Zeng, R. Yang, Z. Xu, Z. Zhou, S. Lyu, Insights into the removal of organic contaminants by calcium sulfite activation with Fe(III): performance, kinetics, and mechanisms, Water Res., 221 (2022) 118792, doi: 10.1016/j.watres.2022.118792.
  35. Y. Yu, S. Li, X. Peng, S. Yang, Y. Zhu, L. Chen, F. Wu, G. Mailhot, Efficient oxidation of bisphenol A with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral pH under UV irradiation, Environ. Chem. Lett., 14 (2016) 527–532.
  36. E.E. Daugherty, B. Gilbert, P.S. Nico, T. Borch, Complexation and redox buffering of iron(II) by dissolved organic matter, Environ. Sci. Technol., 51 (2017) 11096–11104.
  37. W. Pasiuk-Bronikowska, T. Bronikowski, M. Ulejczyk, Synergy in the autoxidation of S(IV) inhibited by phenolic compounds, J. Phys. Chem. A, 107 (2003) 1742–1748.
  38. L.R. Martin, M.W. Hill, A.F. Tai, T.W. Good, The iron catalyzed oxidation of sulfur(IV) in aqueous solution: differing effects of organics at high and low pH, J. Geophys. Res.: Atmos., 96 (1991) 3085–3097.
  39. V.K. Meena, Y. Dhayal, D.S. Rathore, C.P.S. Chandel, K.S. Gupta, Inhibition of aquated sulfur dioxide autoxidation by aliphatic, acyclic, aromatic, and heterocyclic volatile organic compounds, Int. J. Chem. Kinet., 49 (2017) 221–233.
  40. Y. Guo, X. Lou, C. Fang, D. Xiao, Z. Wang, J. Liu, Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants, Environ. Sci. Technol., 47 (2013) 11174–11181.
  41. Q. Lai, Y. Zhang, B. Liang, C. Gong, Study on catalytic oxidation of S(IV) in acid Fe(III) aqueous solution, Acta Sci. Circum., (2004) 1091–1097 (in Chinese).
  42. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  43. G.V. Buxton, S. McGowan, G.A. Salmon, J.E. Williams, N.D. Woods, A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): a pulse and gamma-radiolysis study, Atmos. Environ., 30 (1996) 2483–2493.
  44. A.N. Yermakov, A.P. Purmal, Iron-catalyzed oxidation of sulfite: from established results to a new understanding, Prog. React. Kinet. Mech., 28 (2003) 189–255.
  45. E. Kálmán, T. Radnai, G. Pálinkás, F. Hajdu, A. Vértes, Hydration of iron(II) ion in aqueous solutions, Electrochim. Acta, 33 (1988) 1223–1228.
  46. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  47. C. Brandt, R. Vaneldik, Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms, Chem. Rev., 95 (1995) 119–190.
  48. M.H. Conklin, M.R. Hoffmann, Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes, Environ. Sci. Technol., 22 (1988) 899–907.
  49. J. Kraft, R. Vaneldik, The possible role of iron(III)-sulfur(IV) complexes in the catalyzed autoxidation of sulfur(IV)-oxides. A mechanistic investigation, Atmos. Environ., 23 (1989) 2709–2713.
  50. E.A. Betterton, M.R. Hoffmann, Oxidation of aqueous sulfur dioxide by peroxymonosulfate, J. Phys. Chem., 92 (1988) 5962–5965.
  51. M. Fischer, P. Warneck, Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution, J. Phys. Chem., 100 (1996) 15111–15117.
  52. A.F. Gil, L. Salgado, L. Galicia, I. Gonzalez, Predominancezone diagrams of Fe(III) and Fe(II) sulfate complexes in acidic media. Voltammetric and spectrophotometric studies, Talanta, 42 (1995) 407–414.
  53. Y. Yuan, T. Luo, J. Xu, J. Li, F. Wu, M. Brigante, G. Mailhot, Enhanced oxidation of aniline using Fe(III)–S(IV) system: role of different oxysulfur radicals, Chem. Eng. J., 362 (2019) 183–189.
  54. Y. Gao, W. Fan, Z. Zhang, Y. Zhou, Z. Zeng, K. Yan, J. Ma, K. Hanna, Transformation mechanisms of iopamidol by iron/sulfite systems: involvement of multiple reactive species and efficiency in real water, J. Hazard. Mater., 426 (2022) 128114, doi: 10.1016/j.jhazmat.2021.128114.
  55. C. Maharaj, J. Chivavava, A. Lewis, Treatment of a highlyconcentrated sulphate-rich synthetic wastewater using calcium hydroxide in a fluidised bed crystallizer, J. Environ. Manage., 207 (2018) 378–386.
  56. B.M. Esteves, C.S.D. Rodrigues, F.J. Maldonado-Hodar, L.M. Madeira, Treatment of high-strength olive mill wastewater by combined Fenton-like oxidation and coagulation/flocculation, J. Environ. Chem. Eng., 7 (2019) 103252, doi: 10.1016/j.jece.2019.103252.
  57. K. Zhang, The Effect of Iron Ion Concentration in Wastewater on Activated Sludge Yield, Lanzhou Univ. Technol., 2020 (in Chinese).
  58. S. Miao, B. Yu, Y. Ren, C. Cai, Solubility and physical properties of calcium sulfate dihydrate in NaCl and glycerol aqueous solution at 303.15, 323.15, and 343.15 K, J. Chem. Eng. Data, 65 (2020) 2703–2711.