References
- WHO, World Health Statistics 2022: Monitoring Health for
the SDGs, Sustainable Development Goals, World Health
Organization, Geneva, 2022.
- S. Wacławek, H.V. Lutze, K. Grübel, V.V. Padil, M. Černík,
D.D. Dionysiou, Chemistry of persulfates in water and
wastewater treatment: a review, J. Chem. Eng., 330 (2017) 44–62.
- Y. Tang, S.F. Harpenslager, M.M.L. Van Kempen,
E.J.H. Verbaarschot, L.M.J.M. Loeffen, J.G.M. Roelofs,
A.J.P. Smolders, L.P.M. Lamers, Aquatic macrophytes can
be used for wastewater polishing but not for purification in
constructed wetlands, Biogeosciences, 14 (2017) 755–766.
- W.W. Ngah, M. Hanafiah, Removal of heavy metal ions from
wastewater by chemically modified plant wastes as adsorbents:
a review, Bioresour. Technol., 99 (2008) 3935–3948.
- R. Mithra, S. Sivaramakrishnan, P. Santhanam, S. Dinesh Kumar,
R. Nandakumar, Investigation on nutrients and heavy metal
removal efficacy of seaweeds, Caulerpa taxifolia and Kappaphycus
alvarezii for wastewater remediation, J. Algal Biomass Util.,
3 (2012) 21–27.
- C. Forni, J. Chen, L. Tancioni, M.G. Caiola, Evaluation of the
fern Azolla for growth, nitrogen and phosphorus removal
from wastewater, Water Res., 35 (2001) 1592–1598.
- Y. Tian, W. He, X. Zhu, W. Yang, N. Ren, B.E. Logan, Energy
efficient electrocoagulation using an air-breathing cathode to
remove nutrients from wastewater, J. Chem. Eng., 292 (2016)
308–314.
- H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao,
Simultaneous removal of ammonia nitrogen and recovery of
phosphate from swine wastewater by struvite electrochemical
precipitation and recycling technology, J. Cleaner Prod.,
127 (2016) 302–310.
- Y. Chen, B. Li, L. Ye, Y. Peng, The combined effects of COD/N
ratio and nitrate recycling ratio on nitrogen and phosphorus
removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated
filter (BAF) systems, Biochem. Eng. J., 93 (2015) 235–242.
- S. Rezania, S.M. Taib, M.F.M. Din, F.A. Dahalan, H. Kamyab,
Comprehensive review on phytotechnology: heavy metals
removal by diverse aquatic plants species from wastewater,
J. Hazard. Mater., 318 (2016) 587–599.
- R. Hamza, M.F. Hamoda, M. Elassar, Energy and reliability
analysis of wastewater treatment plants in small communities
in Ontario, Water Sci. Technol., 85 (2022) 1824–1839.
- F. Vafaei, A.R. Khataee, A. Movafeghi, S.Y.S. Lisar, M. Zarei,
Bioremoval of an azo dye by Azolla filiculoides: study of growth,
photosynthetic pigments and antioxidant enzymes status,
Int. Biodeterior. Biodegrad., 75 (2012) 194–200.
- S. Rezania, M. Ponraj, A. Talaiekhozani, S.E. Mohamad,
M.F.M. Din, S.M. Taib, F. Sabbagh, F.M. Sairan, Perspectives
of phytoremediation using water hyacinth for removal of
heavy metals, organic and inorganic pollutants in wastewater,
J. Environ. Manage., 163 (2015) 125–133.
- M. Khosravi, R. Rakhshaee, M.T. Ganji, Pre-treatment processes
of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II)
from aqueous solution in the batch and fixed-bed reactors,
J. Hazard. Mater., 127 (2005) 228–237.
- N. Muradov, M. Taha, A.F. Miranda, K. Kadali, A. Gujar,
S. Rochfort, T. Stevenson, A.S. Ball, A. Mouradov, Dual
application of duckweed and Azolla plants for wastewater
treatment and renewable fuels and petrochemicals production,
Biotechnol. Biofuels, 7 (2014) 30, doi: 10.1186/1754-6834-7-30.
- G. Abraham, D.W. Dhar, Induction of salt tolerance in Azolla
microphylla Kaulf through modulation of antioxidant enzymes
and ion transport. Protoplasma, 245 (2010) 105–111.
- W. Cheng, Y. Okamoto, M. Takei, K. Tawaraya, H. Yasuda,
Combined use of Azolla and loach suppressed weed Monochoria
vaginalis and increased rice yield without agrochemicals,
Org. Agric., 5 (2015) 1–10.
- U. Kumar, A.K. Nayak, P. Panneerselvam, A. Kumar, S. Mohanty,
M. Shahid, A. Sahoo, M. Kaviraj, H. Priya, N.N. Jambhulkar,
P.K. Dash, S.D. Mohapatra, P.K. Nayak, Cyanobiont diversity in
six Azolla spp. and relation to Azolla-nutrient profiling, Planta,
249 (2019) 1435–1447.
- Azolla Lam. [family AZOLLACEAE]: JSTOR, 2007 [Updated 19
August 2007]. Available at https://plants.jstor.org/
- S. Ahmady-Asbchin, A.N. Omran, N. Jafari, Potential of Azolla
filiculoides in the removal of Ni and Cu from wastewaters,
Afr. J. Biotechnol., 11 (2012) 16158–16164.
- M.A. Zazouli, A.H. Mahvi, S. Dobaradaran, M. Barafrashtehpour,
Y. Mahdavi, D. Balarak, Adsorption of fluoride from
aqueous solution by modified Azolla filiculoides, Fluoride,
47 (2014) 349–358.
- M.A. Zazouli, Y. Mahdavi, E. Bazrafshan, D. Balarak,
Phytodegradation potential of bisphenol A from aqueous
solution by Azolla filiculoides, J. Environ. Health Sci. Eng.,
12 (2014) 66, doi: 10.1186/2052-336X-12-66.
- D. Balarak, E. Bazrafshan, F. Kord Mostafapour, Equilibrium,
kinetic studies on the adsorption of Acid Green 3 (AG 3)
dye onto Azolla filiculoides as adsorbent, J. Am. Chem. Soc.,
11 (2016) 1–10.
- A. Ena, P. Carlozzi, B. Pushparaj, R. Paperi, S. Carnevale,
A. Sacchi, Ability of the aquatic fern Azolla to remove chemical
oxygen demand and polyphenols from olive mill wastewater,
Grasas y Aceites, 58 (2007) 34–39.
- M. Zhao, J.R. Duncan, R.P. Van Hille, Removal and recovery
of zinc from solution and electroplating effluent using
Azolla filiculoides, Water Res., 33 (1999) 1516–1522.
- M.T. Ganji, M. Khosravi, R. Rakhshaee, Biosorption of Pb, Cd,
Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2, Int. J. Environ. Sci. Technol., 1 (2005) 265–271.
- R. Rakhshaee, M. Khosravi, M.T. Ganji, Kinetic modeling and
thermodynamic study to remove Pb(II), Cd(II), Ni(II) and
Zn(II) from aqueous solution using dead and living Azolla
filiculoides, J. Hazard. Mater., 134 (2006) 120–129.
- S. Prabakaran, T. Mohanraj, A. Arumugam, S. Sudalai,
A state-of-the-art review on the environmental benefits and
prospects of Azolla in biofuel, bioremediation and biofertilizer
applications, Ind. Crops Prod., 183 (2022) 114942, doi: 10.1016/j.indcrop.2022.114942.
- R. Sadeghi, R. Zarkami, K. Sabetraftar, P. Van Damme,
A review of some ecological factors affecting the growth of
Azolla spp., Caspian J. Environ. Sci., 11 (2013) 65–76.
- S. Taghilou, M. Peyda, M.M. Mehrasbi, Selection of Wastewater
Treatment Process Based on the Analytical Hierarchy
Process in Zanjanrood Catchment, 3rd International and
21st National Conference on Environmental Health, Zanjan,
Iran, 2019.
- T.A. Lumpkin, Azolla [family AZOLLACEAE]: JSTOR; 2012
[Updated 23 July 2012]. Available at https://plants.jstor.org/
- P. Brouwer, H. Schluepmann, K.G.J. Nierop, J. Elderson,
P.K. Bijl, I. Van Der Meer, W.D. Visser, G.J. Reichart, S. Smeekens,
A.V.D. Werf, Growing Azolla to produce sustainable protein
feed: the effect of differing species and CO2 concentrations on
biomass productivity and chemical composition, J. Sci. Food
Agric., 98 (2018) 4759–4768.
- K. Maejima, S. Kitoh, E. Uheda, N. Shiomi, Response of 19
Azolla strains to a high concentration of ammonium ions,
Plant Soil, 234 (2001) 247–252.
- A. Golzary, O. Tavakoli, Y. Rezaei, A. Karbassi, Wastewater
treatment by Azolla filiculoides: a study on color, odor, COD,
nitrate, and phosphate removal, Pollution, 4 (2018) 69–76.
- A. Banach, A. Kuźniar, R. Mencfel, A. Wolińska, The study on
the cultivable microbiome of the aquatic fern Azolla filiculoides L. as new source of beneficial microorganisms, Appl. Sci.,
9 (2019) 2143, doi: 10.3390/app9102143.
- M.L. Costa, M.C.R. Santos, F. Carrapiço, A.L. Pereira, Azolla/Anabaena’s behaviour in urban wastewater and artificial
media–influence of combined nitrogen, Water Res., 43 (2009)
3743–3750.
- M.J. Pinero-Rodríguez, R. Fernández-Zamudio, I. Gomez-
Mestre, C. Díaz-Paniagua, Ranunculus peltatus develops an
emergent morphotype in response to shading by the invasive
Azolla filiculoides, Aquat. Bot., 152 (2019) 32–35.
- R.K. Yadav, A. Chatrath, K. Tripathi, M. Gerard, A. Ahmad,
V. Mishra, G. Abraham, Salinity tolerance mechanism in
the aquatic nitrogen fixing pteridophyte Azolla: a review,
Symbiosis, 83 (2021) 129–142.
- A. Arora, P.K. Singh, Comparison of biomass productivity and
nitrogen fixing potential of Azolla spp., Biomass Bioenergy,
24 (2003) 175–178.
- S.J. Varjani, V.K. Srivastava, Green technology and sustainable
development of environment, Renewable Resour. J., 3 (2015)
244–249.
- P.S. Parikh, S.K. Mazumder, Capacity of Azolla pinnata var.
imbricata to absorb heavy metals and fluorides from the
wastewater of oil and petroleum refining industry at Vadodara,
Int. J. Allied Pract. Res. Rev., 11 (2015) 37–43.
- B. Dhir, P. Sharmila, P.P. Saradhi, Potential of aquatic macrophytes
for removing contaminants from the environment,
Crit. Rev. Env. Sci. Technol., 39 (2009) 754–781.
- A. Sing, B. Kumar, S. Pabbi, M. Kapoor, Phytoremediation
Potential of Azolla in Relation to Heavy Metals – A Review, SC,
Verma, S.P. Khullar, H.K. Cheema, Eds., Perspect. Pteridophytes,
Bishen Singh Mahendra Pal Singh, India, 2008, pp. 487–499.
- A.M. Banach, A. Kuźniar, J. Grządziel, A. Wolińska, Azolla filiculoides L. as a source of metal-tolerant microorganisms, PLoS
One, 15 (2020) e0232699, doi: 10.1371/journal.pone.0232699.
- V. Dushenkov, P.B.A.N. Kumar, H. Motto, I. Raskin,
Rhizofiltration: the use of plants to remove heavy metals from
aqueous streams, Environ. Sci. Technol., 29 (1995) 1239–1245.
- M. Rajkumar, S. Sandhya, M.N.V. Prasad, H. Freitas, Perspectives
of plant-associated microbes in heavy metal
phytoremediation, Biotechnol. Adv., 30 (2012) 1562–1574.
- A. Banerjee, A. Roychoudhury, Assessing the rhizofiltration
potential of three aquatic plants exposed to fluoride and multiple
heavy metal polluted water, Vegetos, 35 (2022) 1158–1164.
- M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, L.H. Lim, Batch adsorption
studies on the removal of Acid Blue 25 from aqueous solution
using Azolla pinnata and soya bean waste, Arabian J. Sci. Eng.,
41 (2016) 2453–2464.
- N. Shafi, A.K. Pandit, A.N. Kamili, B. Mushtaq, Heavy
metal accumulation by Azolla pinnata of Dal lake ecosystem,
India, Dev., 1 (2015) 8–12.
- M. Goala, K.K. Yadav, J. Alam, B. Adelodun, K.S. Choi,
M.M.S. Cabral-Pinto, A.A. Hamid, M. Alhoshan, F.A.A. Ali,
A.K. Shukla, Phytoremediation of dairy wastewater using
Azolla pinnata: application of image processing technique for
leaflet growth simulation, J. Water Process Eng., 42 (2021)
102152, doi: 10.1016/j.jwpe.2021.102152.
- V. Kumar, P. Kumar, J. Singh, P. Kumar, Potential of water
fern (Azolla pinnata R.Br.) in phytoremediation of integrated
industrial effluent of SIIDCUL, Haridwar, India: removal of
physicochemical and heavy metal pollutants, Int. J. Phytorem.,
22 (2020) 392–403.
- D. Balarak, E. Bazrafshan, F. Kord Mostafapour, Equilibrium,
kinetic studies on the adsorption of Acid Green 3 (AG 3)
dye onto Azolla filiculoides as adsorbent, Am. Chem. Sci. J.,
11 (2016) 1–10.
- P. Carlozzi, G. Padovani, The aquatic fern Azolla as a natural
plant-factory for ammonia removal from fish-breeding fresh
wastewater, Environ. Sci. Pollut. Res., 23 (2016) 8749–8755.
- D.J. Babu, B. Sumalatha, T.C. Venkateswarulu, K.M. Das,
V.P. Kodali, Kinetic, equilibrium and thermodynamic studies
of biosorption of chromium(VI) from aqueous solutions using
Azolla filiculoides, J. Pure Appl. Microbiol., 8 (2014) 3107–3116.
- R. Anandha Varun, S. Kalpana, Performance analysis of nutrient
removal in pond water using water hyacinth and Azolla with
papaya stem, Int. Res. J. Eng. Technol., 2 (2015) 444–448.
- A. Arora, S. Saxena, R. Shah, Aquatic Microphyte Azolla for
Nutrient Removal from Wastewaters in Constructed Wetlands,
Proceedings of International Conference on Energy and
Environment, March 19–21, 2009 ISSN:2070-3740, National
Institute of Technology, Chandigarh, India, 2009, pp. 185–188.
- N. Shafi, A.K. Pandit, A.N. Kamili, B. Mushtaq, Heavy
metal accumulation by Azolla pinnata of dal lake ecosystem,
India, Dev., 1 (2015) 8–12.
- P.K. Rai, Phytoremediation of Hg and Cd from industrial
effluents using an aquatic free floating macrophyte Azolla
pinnata, Int. J. Phytorem., 10 (2008) 430–439.
- P.K. Rai, B.D. Tripathi, Comparative assessment of Azolla
pinnata and Vallisneria spiralis in Hg removal from GB Pant
Sagar of Singrauli Industrial region, India, Environ. Monit.
Assess., 148 (2009) 75–84.
- P.K. Rai, Microcosm investigation on phytoremediation of
Cr using Azolla pinnata, Int. J. Phytorem., 12 (2009) 96–104.
- M.A. Zazoli, D. Belalak, Y. Mahdavi, F. Karimnejad, Application
of Azolla filiculoides biomass for Acid Blue 15 dye (AB 15)
removal from aqueous solutions, J. Basic Res. Med. Sci., 1 (2014)
29–37.
- M.A. Zazouli, D. Balarak, Y. Mahdavi, Effect of Azolla filiculoides on removal of Reactive Red 198 in aqueous solution, J. Adv.
Environ. Health Res., 1 (2013) 44–50.
- L.J. Umali, J.R. Duncan, J.E. Burgess, Performance of dead
Azolla filiculoides biomass in biosorption of Au from wastewater,
Biotechnol. Lett., 28 (2006) 45–50.
- D. Balarak, R.A. Dianati Tilak, Z. Yousefi, M.A. Zazouli,
J. Yazdani, Y. Esfandyari, Phytodegradation potential of
phenol from aqueous solution by Azolla filiculoides, J. Biorem.
Biodegrad., 5 (2014) 66,
doi: 10.1186/2052-336X-12-66.
- M.A. Zazouli, A.H. Mahvi, S. Dobaradaran, M. Barafrashtehpour,
Y. Mahdavi, D. Balarak, Adsorption of fluoride from aqueous
solution by modified Azolla filiculoides, Adsorption, 47 (2014)
349–358.
- S. Taghilou, M. Peyda, M.R. Mehrasbi, Modeling of wastewater
treatment by Azolla filiculoides using response surface
methodology, J. Environ. Health Sci. Eng., 19 (2021) 1723–1733.
- P. Jayasundara, Wastewater treatment by Azolla: a review,
Diyala Agric. Sci. J., 14 (2022) 40–46.
- P.K. Rai, Phytoremediation of Hg and Cd from industrial
effluents using an aquatic free floating macrophyte Azolla
pinnata, Int. J. Phytorem., 10 (2008) 430–439.
- M.A. Zazouli, Y. Mahdavi, E. Bazrafshan, D. Balarak,
Phytodegradation potential of bisphenol A from aqueous
solution by Azolla filiculoides, J. Environ. Health Sci. Eng.,
12 (2014) 66, doi: 10.1186/2052-336X-12-66.
- N.Z. Mamat, S.R.S. Abdullah, H.A. Hasan, N.I. Ismail,
S.S.N. Sharuddin, Polishing of treated palm oil mill effluent
using Azolla pinnata, J. Biochem. Microbiol. Biotechnol.,
10 (2022) 40–45.
- L. Polechońska, E. Szczęśniak, A. Klink, Comparative analysis
of trace and macro-element bioaccumulation in four freefloating
macrophytes in area contaminated by copper smelter,
Int. J. Phytorem., 24 (2022) 324–333.
- F.R. El Awady, M.A. Abbas, A.M. Abdelghany, Y.A. El-Amier,
Silver modified hydrophytes for heavy metal removal from
different water resources, Biointerface Res. Appl. Chem.,
11 (2021) 14555–14563.
- L.A. Ndeda, S. Manohar, Bioconcentration factor and
translocation ability of heavy metals within different habitats
of hydrophytes in Nairobi Dam, Kenya, J. Environ. Sci. Toxicol.
Food Technol., 8 (2014) 42–45.
- Q. Hasani, N. Pratiwi, H. Effendi, Y. Wardiatno, J.A.R. Guk Guk,
H.W. Maharani, M. Rahman, Azolla pinnata as phytoremediation
agent of iron (Fe) in ex sand mining waters, J. Nat. Sci.,
20 (2021) 1–12.
- I.V. Seregin, A.D. Kozhevnikova, Phytochelatins: sulfurcontaining
metal(loid)-chelating ligands in plants, Int. J. Mol.
Sci., 24 (2023) 2430, doi: 10.3390/ijms24032430.
- M. Talebi, B.E.S. Tabatabaei, H. Akbarzadeh, Hyperaccumulation
of Cu, Zn, Ni, and Cd in Azolla species inducing expression
of methallothionein and phytochelatin synthase genes,
Chemosphere, 230 (2019) 488–497.
- A. Sood, P.L. Uniyal, R. Prasanna, A.S. Ahluwalia,
Phytoremediation potential of aquatic macrophyte, Azolla,
AMBIO, 41 (2012) 122–137.
- L.G. de Araujo, L.C. Vieira, R.L.S. Canevesi, E.A. da Silva,
T. Watanabe, R.V. de Padua Ferreira, J.T. Marumo, Biosorption
of uranium from aqueous solutions by Azolla sp. and Limnobium
laevigatum, Environ. Sci. Pollut. Res., 29 (2022) 45221–45229.
- R. Bennicelli, Z. Stępniewska, A. Banach, K. Szajnocha,
J. Ostrowski, The ability of Azolla caroliniana to remove heavy
metals (Hg(II), Cr(III), Cr(VI)) from municipal wastewater,
Chemosphere, 55 (2004) 141–146.
- M. Hassanzadeh, R. Zarkami, R. Sadeghi, Uptake and
accumulation of heavy metals by water body and Azolla
filiculoides in the Anzali wetland, Appl. Water Sci., 11 (2021) 91,
doi: 10.1007/s13201-021-01428-y.
- L.M. Madikizela, Removal of organic pollutants in water using
water hyacinth (Eichhornia crassipes), J. Environ. Manage.,
295 (2021) 113153, doi: 10.1016/j.jenvman.2021.113153.
- I. Maldonado, A.P. Vega Quispe, D. Merma Chacca, F. Zirena
Vilca, Optimization of the elimination of antibiotics by
Lemna gibba and Azolla filiculoides using response surface
methodology
(RSM), Front. Environ. Sci., 10 (2022),
doi: 10.3389/fenvs.2022.940971.
- T.J. Al-Musawi, N. Mengelizadeh, M. Taghavi, S. Mohebi,
D. Balarak, Activated carbon derived from Azolla filiculoides fern: a high-adsorption-capacity adsorbent for residual
ampicillin in pharmaceutical wastewater, Biomass Convers.
Biorefin., (2021) 1–13, doi: 10.1007/s13399-021-01962-4.
- I. Maldonado, E.G. Moreno Terrazas, F.Z. Vilca, Application
of duckweed (Lemna sp.) and water fern (Azolla sp.) in the
removal of pharmaceutical residues in water: state-of-art
focus on antibiotics, Sci. Total Environ., 838 (2022) 156565,
doi: 10.1016/j.scitotenv.2022.156565.
- A.A. Adelodun, T. Olajire, N.O. Afolabi, A.S. Akinwumiju,
E. Akinbobola, U.O. Hassan, Phytoremediation potentials
of Eichhornia crassipes for nutrients and organic pollutants
from textile wastewater, Int. J. Phytorem., 23 (2021) 1333–1341.
- R. Prasad, D. Sharma, K.D. Yadav, H. Ibrahim, Preliminary
study on greywater treatment using water hyacinth,
Appl. Water Sci., 11 (2021) 1–8.
- A. Sarkar, N. Gogoi, S. Roy, Bisphenol-A incite dosedependent
dissimilitude in the growth pattern, physiology,
oxidative status, and metabolite profile of Azolla filiculoides,
Environ. Sci. Pollut. Res. Int., 29 (2022) 91325–91344.
- T. Kösesakal, M. Seyhan, Naphthalene stress responses of
the aquatic fern Azolla filiculoides Lam. and evaluation of
phytoremediation potential, Polycyclic Aromat. Compd.,
(2022) 1–18, doi: 10.1080/10406638.2022.2126505.
- T. Kösesakal, M. Seyhan, Phenanthrene stress response
and phytoremediation potential of free-floating fern Azolla
filiculoides Lam, Int. J. Phytorem., 25 (2023) 207–220.
- E. Bianchi, A. Biancalani, C. Berardi, A. Antal, D. Fibbi, A. Coppi,
L. Lastrucci, N. Bussotti, I. Colzi, L. Renai, C. Scordo, M.D. Bubba,
C. Gonnelli, Improving the efficiency of wastewater treatment
plants: bio-removal of heavy-metals and pharmaceuticals
by Azolla filiculoides and Lemna minuta, Sci. Total Environ.,
746 (2020) 141219, doi: 10.1016/j.scitotenv.2020.141219.
- A. Abd Kadir, S.R.S. Abdullah, B.A. Othman, H.A. Hasan,
A.R. Othman, M.F. Imron, N’I. Ismail, S.B. Kurniawan, Dual
function of Lemna minor and Azolla pinnata as phytoremediator
for palm oil mill effluent and as feedstock, Chemosphere,
259 (2020) 127468, doi: 10.1016/j.chemosphere.2020.127468.
- National Research Council, Renewable Fuel Standard:
Potential Economic and Environmental Effects of U.S. Biofuel
Policy, Washington, D.C, 2012, p. 416.
- W. Zhang, A.Y. Elaine, S. Rozelle, J. Yang, S. Msangi, The
impact of biofuel growth on agriculture: why is the range of
estimates so wide?, Food Policy, 38 (2013) 227–239.
- M. Battaglia, W. Thomason, J.H. Fike, G.K. Evanylo,
M.V. Cossel, E. Babur, Y. Iqbal, A.A. Diatta, The broad
impacts of corn stover and wheat straw removal for biofuel
production on crop productivity, soil health and greenhouse
gas emissions: a review, GCB Bioenergy, 13 (2021) 45–57.
- T.G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad,
E.D. Van Hullebusch, S. Rtimi, Emerging technologies for
biofuel production: a critical review on recent progress,
challenges and perspectives, J. Environ. Manage., 290 (2021)
112627, doi: 10.1016/j.jenvman.2021.112627.
- A. Arora, P. Nandal, A. Chaudhary. Critical evaluation of novel
applications of aquatic weed Azolla as sustainable feedstock
for deriving bioenergy and feed supplement, Environ. Rev.,
(2022),
doi: 10.1139/er-2022-0033.
- H.Z. Hamdan, A.F. Houri, CO2 sequestration by propagation
of the fast-growing Azolla spp., Environ. Sci. Pollut. Res.,
29 (2022) 16912–16924.
- S. Sathish, S. Supriya, P. Andal, D. Prabu, M. Rajasimman,
S. Ansar, S. Rezania, Effective utilization of Azolla filiculoides for biodiesel generation using graphene oxide nano
catalyst derived from agro-waste, Fuel, 329 (2022) 125412,
doi: 10.1016/j.fuel.2022.125412.
- A.F. Miranda, B. Biswas, N. Ramkumar, R. Singh, J. Kumar,
A. James, F. Roddick, B. Lal, S. Subudhi, Th. Bhaskar,
A. Mouradov. Aquatic plant Azolla as the universal feedstock
for biofuel production, Biotechnol. Biofuels, 9 (2016) 1–17.
- D. Kannan, W. Christraj, Emission analysis of Azolla methyl
ester with BaO nano additives for IC engine, Energy Sources
Part A, 40 (2018) 1234–1241.
- N. Bose, Production and characterization of biodiesel using
Azolla pinnata, Jr. Ind. Pollut. Control, 34 (2018) 1833–1838.
- S.K. Jain, G.S. Gujral, N.K. Jha, P. Vasudevan, Production of
biogas from Azolla pinnata R. Br and Lemna minor L.: effect
of heavy metal contamination, Bioresour. Technol., 41 (1992)
273–277.
- A. Mudhoo, S. Kumar, Effects of heavy metals as stress factors
on anaerobic digestion processes and biogas production
from biomass, Int. J. Environ. Sci. Technol., 10 (2013)
1383–1398.
- C. Paoletti, F. Bocci, G. Lercker, P. Capella, R. Materassi, Lipid
composition of Azolla caroliniana biomass and its seasonal
variation, Phytochemistry, 26 (1987) 1045–1047.
- N.T. Taha Al-Taee, E.S. Mostafa, S.K. Al-Taee, A.A. Abd-Alnafi Al-Aaraji, Impact of Azolla on the histopathology of
the liver and intestine of the fingerling carp Cyprinus carpio,
Egypt. J. Aquat. Biol. Fish., 26 (2022) 373–384.
- A.L. Pereira, L.J. Bessa, P.N. Leão, V. Vasconcelos, P.M. da
Costa, Bioactivity of Azolla aqueous and organic extracts
against bacteria and fungi, Symbiosis, 65 (2015) 17–21.