References

  1. WHO, World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals, World Health Organization, Geneva, 2022.
  2. S. Wacławek, H.V. Lutze, K. Grübel, V.V. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review, J. Chem. Eng., 330 (2017) 44–62.
  3. Y. Tang, S.F. Harpenslager, M.M.L. Van Kempen, E.J.H. Verbaarschot, L.M.J.M. Loeffen, J.G.M. Roelofs, A.J.P. Smolders, L.P.M. Lamers, Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands, Biogeosciences, 14 (2017) 755–766.
  4. W.W. Ngah, M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  5. R. Mithra, S. Sivaramakrishnan, P. Santhanam, S. Dinesh Kumar, R. Nandakumar, Investigation on nutrients and heavy metal removal efficacy of seaweeds, Caulerpa taxifolia and Kappaphycus alvarezii for wastewater remediation, J. Algal Biomass Util., 3 (2012) 21–27.
  6. C. Forni, J. Chen, L. Tancioni, M.G. Caiola, Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater, Water Res., 35 (2001) 1592–1598.
  7. Y. Tian, W. He, X. Zhu, W. Yang, N. Ren, B.E. Logan, Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater, J. Chem. Eng., 292 (2016) 308–314.
  8. H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao, Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology, J. Cleaner Prod., 127 (2016) 302–310.
  9. Y. Chen, B. Li, L. Ye, Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Biochem. Eng. J., 93 (2015) 235–242.
  10. S. Rezania, S.M. Taib, M.F.M. Din, F.A. Dahalan, H. Kamyab, Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater, J. Hazard. Mater., 318 (2016) 587–599.
  11. R. Hamza, M.F. Hamoda, M. Elassar, Energy and reliability analysis of wastewater treatment plants in small communities in Ontario, Water Sci. Technol., 85 (2022) 1824–1839.
  12. F. Vafaei, A.R. Khataee, A. Movafeghi, S.Y.S. Lisar, M. Zarei, Bioremoval of an azo dye by Azolla filiculoides: study of growth, photosynthetic pigments and antioxidant enzymes status, Int. Biodeterior. Biodegrad., 75 (2012) 194–200.
  13. S. Rezania, M. Ponraj, A. Talaiekhozani, S.E. Mohamad, M.F.M. Din, S.M. Taib, F. Sabbagh, F.M. Sairan, Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater, J. Environ. Manage., 163 (2015) 125–133.
  14. M. Khosravi, R. Rakhshaee, M.T. Ganji, Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors, J. Hazard. Mater., 127 (2005) 228–237.
  15. N. Muradov, M. Taha, A.F. Miranda, K. Kadali, A. Gujar, S. Rochfort, T. Stevenson, A.S. Ball, A. Mouradov, Dual application of duckweed and Azolla plants for wastewater treatment and renewable fuels and petrochemicals production, Biotechnol. Biofuels, 7 (2014) 30, doi: 10.1186/1754-6834-7-30.
  16. G. Abraham, D.W. Dhar, Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma, 245 (2010) 105–111.
  17. W. Cheng, Y. Okamoto, M. Takei, K. Tawaraya, H. Yasuda, Combined use of Azolla and loach suppressed weed Monochoria vaginalis and increased rice yield without agrochemicals, Org. Agric., 5 (2015) 1–10.
  18. U. Kumar, A.K. Nayak, P. Panneerselvam, A. Kumar, S. Mohanty, M. Shahid, A. Sahoo, M. Kaviraj, H. Priya, N.N. Jambhulkar, P.K. Dash, S.D. Mohapatra, P.K. Nayak, Cyanobiont diversity in six Azolla spp. and relation to Azolla-nutrient profiling, Planta, 249 (2019) 1435–1447.
  19. Azolla Lam. [family AZOLLACEAE]: JSTOR, 2007 [Updated 19 August 2007]. Available at https://plants.jstor.org/
  20. S. Ahmady-Asbchin, A.N. Omran, N. Jafari, Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters, Afr. J. Biotechnol., 11 (2012) 16158–16164.
  21. M.A. Zazouli, A.H. Mahvi, S. Dobaradaran, M. Barafrashtehpour, Y. Mahdavi, D. Balarak, Adsorption of fluoride from aqueous solution by modified Azolla filiculoides, Fluoride, 47 (2014) 349–358.
  22. M.A. Zazouli, Y. Mahdavi, E. Bazrafshan, D. Balarak, Phytodegradation potential of bisphenol A from aqueous solution by Azolla filiculoides, J. Environ. Health Sci. Eng., 12 (2014) 66, doi: 10.1186/2052-336X-12-66.
  23. D. Balarak, E. Bazrafshan, F. Kord Mostafapour, Equilibrium, kinetic studies on the adsorption of Acid Green 3 (AG 3) dye onto Azolla filiculoides as adsorbent, J. Am. Chem. Soc., 11 (2016) 1–10.
  24. A. Ena, P. Carlozzi, B. Pushparaj, R. Paperi, S. Carnevale, A. Sacchi, Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater, Grasas y Aceites, 58 (2007) 34–39.
  25. M. Zhao, J.R. Duncan, R.P. Van Hille, Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides, Water Res., 33 (1999) 1516–1522.
  26. M.T. Ganji, M. Khosravi, R. Rakhshaee, Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2, Int. J. Environ. Sci. Technol., 1 (2005) 265–271.
  27. R. Rakhshaee, M. Khosravi, M.T. Ganji, Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides, J. Hazard. Mater., 134 (2006) 120–129.
  28. S. Prabakaran, T. Mohanraj, A. Arumugam, S. Sudalai, A state-of-the-art review on the environmental benefits and prospects of Azolla in biofuel, bioremediation and biofertilizer applications, Ind. Crops Prod., 183 (2022) 114942, doi: 10.1016/j.indcrop.2022.114942.
  29. R. Sadeghi, R. Zarkami, K. Sabetraftar, P. Van Damme, A review of some ecological factors affecting the growth of Azolla spp., Caspian J. Environ. Sci., 11 (2013) 65–76.
  30. S. Taghilou, M. Peyda, M.M. Mehrasbi, Selection of Wastewater Treatment Process Based on the Analytical Hierarchy Process in Zanjanrood Catchment, 3rd International and 21st National Conference on Environmental Health, Zanjan, Iran, 2019.
  31. T.A. Lumpkin, Azolla [family AZOLLACEAE]: JSTOR; 2012 [Updated 23 July 2012]. Available at https://plants.jstor.org/
  32. P. Brouwer, H. Schluepmann, K.G.J. Nierop, J. Elderson, P.K. Bijl, I. Van Der Meer, W.D. Visser, G.J. Reichart, S. Smeekens, A.V.D. Werf, Growing Azolla to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition, J. Sci. Food Agric., 98 (2018) 4759–4768.
  33. K. Maejima, S. Kitoh, E. Uheda, N. Shiomi, Response of 19 Azolla strains to a high concentration of ammonium ions, Plant Soil, 234 (2001) 247–252.
  34. A. Golzary, O. Tavakoli, Y. Rezaei, A. Karbassi, Wastewater treatment by Azolla filiculoides: a study on color, odor, COD, nitrate, and phosphate removal, Pollution, 4 (2018) 69–76.
  35. A. Banach, A. Kuźniar, R. Mencfel, A. Wolińska, The study on the cultivable microbiome of the aquatic fern Azolla filiculoides L. as new source of beneficial microorganisms, Appl. Sci., 9 (2019) 2143, doi: 10.3390/app9102143.
  36. M.L. Costa, M.C.R. Santos, F. Carrapiço, A.L. Pereira, Azolla/Anabaena’s behaviour in urban wastewater and artificial media–influence of combined nitrogen, Water Res., 43 (2009) 3743–3750.
  37. M.J. Pinero-Rodríguez, R. Fernández-Zamudio, I. Gomez- Mestre, C. Díaz-Paniagua, Ranunculus peltatus develops an emergent morphotype in response to shading by the invasive Azolla filiculoides, Aquat. Bot., 152 (2019) 32–35.
  38. R.K. Yadav, A. Chatrath, K. Tripathi, M. Gerard, A. Ahmad, V. Mishra, G. Abraham, Salinity tolerance mechanism in the aquatic nitrogen fixing pteridophyte Azolla: a review, Symbiosis, 83 (2021) 129–142.
  39. A. Arora, P.K. Singh, Comparison of biomass productivity and nitrogen fixing potential of Azolla spp., Biomass Bioenergy, 24 (2003) 175–178.
  40. S.J. Varjani, V.K. Srivastava, Green technology and sustainable development of environment, Renewable Resour. J., 3 (2015) 244–249.
  41. P.S. Parikh, S.K. Mazumder, Capacity of Azolla pinnata var. imbricata to absorb heavy metals and fluorides from the wastewater of oil and petroleum refining industry at Vadodara, Int. J. Allied Pract. Res. Rev., 11 (2015) 37–43.
  42. B. Dhir, P. Sharmila, P.P. Saradhi, Potential of aquatic macrophytes for removing contaminants from the environment, Crit. Rev. Env. Sci. Technol., 39 (2009) 754–781.
  43. A. Sing, B. Kumar, S. Pabbi, M. Kapoor, Phytoremediation Potential of Azolla in Relation to Heavy Metals – A Review, SC, Verma, S.P. Khullar, H.K. Cheema, Eds., Perspect. Pteridophytes, Bishen Singh Mahendra Pal Singh, India, 2008, pp. 487–499.
  44. A.M. Banach, A. Kuźniar, J. Grządziel, A. Wolińska, Azolla filiculoides L. as a source of metal-tolerant microorganisms, PLoS One, 15 (2020) e0232699, doi: 10.1371/journal.pone.0232699.
  45. V. Dushenkov, P.B.A.N. Kumar, H. Motto, I. Raskin, Rhizofiltration: the use of plants to remove heavy metals from aqueous streams, Environ. Sci. Technol., 29 (1995) 1239–1245.
  46. M. Rajkumar, S. Sandhya, M.N.V. Prasad, H. Freitas, Perspectives of plant-associated microbes in heavy metal phytoremediation, Biotechnol. Adv., 30 (2012) 1562–1574.
  47. A. Banerjee, A. Roychoudhury, Assessing the rhizofiltration potential of three aquatic plants exposed to fluoride and multiple heavy metal polluted water, Vegetos, 35 (2022) 1158–1164.
  48. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, L.H. Lim, Batch adsorption studies on the removal of Acid Blue 25 from aqueous solution using Azolla pinnata and soya bean waste, Arabian J. Sci. Eng., 41 (2016) 2453–2464.
  49. N. Shafi, A.K. Pandit, A.N. Kamili, B. Mushtaq, Heavy metal accumulation by Azolla pinnata of Dal lake ecosystem, India, Dev., 1 (2015) 8–12.
  50. M. Goala, K.K. Yadav, J. Alam, B. Adelodun, K.S. Choi, M.M.S. Cabral-Pinto, A.A. Hamid, M. Alhoshan, F.A.A. Ali, A.K. Shukla, Phytoremediation of dairy wastewater using Azolla pinnata: application of image processing technique for leaflet growth simulation, J. Water Process Eng., 42 (2021) 102152, doi: 10.1016/j.jwpe.2021.102152.
  51. V. Kumar, P. Kumar, J. Singh, P. Kumar, Potential of water fern (Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants, Int. J. Phytorem., 22 (2020) 392–403.
  52. D. Balarak, E. Bazrafshan, F. Kord Mostafapour, Equilibrium, kinetic studies on the adsorption of Acid Green 3 (AG 3) dye onto Azolla filiculoides as adsorbent, Am. Chem. Sci. J., 11 (2016) 1–10.
  53. P. Carlozzi, G. Padovani, The aquatic fern Azolla as a natural plant-factory for ammonia removal from fish-breeding fresh wastewater, Environ. Sci. Pollut. Res., 23 (2016) 8749–8755.
  54. D.J. Babu, B. Sumalatha, T.C. Venkateswarulu, K.M. Das, V.P. Kodali, Kinetic, equilibrium and thermodynamic studies of biosorption of chromium(VI) from aqueous solutions using Azolla filiculoides, J. Pure Appl. Microbiol., 8 (2014) 3107–3116.
  55. R. Anandha Varun, S. Kalpana, Performance analysis of nutrient removal in pond water using water hyacinth and Azolla with papaya stem, Int. Res. J. Eng. Technol., 2 (2015) 444–448.
  56. A. Arora, S. Saxena, R. Shah, Aquatic Microphyte Azolla for Nutrient Removal from Wastewaters in Constructed Wetlands, Proceedings of International Conference on Energy and Environment, March 19–21, 2009 ISSN:2070-3740, National Institute of Technology, Chandigarh, India, 2009, pp. 185–188.
  57. N. Shafi, A.K. Pandit, A.N. Kamili, B. Mushtaq, Heavy metal accumulation by Azolla pinnata of dal lake ecosystem, India, Dev., 1 (2015) 8–12.
  58. P.K. Rai, Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata, Int. J. Phytorem., 10 (2008) 430–439.
  59. P.K. Rai, B.D. Tripathi, Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from GB Pant Sagar of Singrauli Industrial region, India, Environ. Monit. Assess., 148 (2009) 75–84.
  60. P.K. Rai, Microcosm investigation on phytoremediation of Cr using Azolla pinnata, Int. J. Phytorem., 12 (2009) 96–104.
  61. M.A. Zazoli, D. Belalak, Y. Mahdavi, F. Karimnejad, Application of Azolla filiculoides biomass for Acid Blue 15 dye (AB 15) removal from aqueous solutions, J. Basic Res. Med. Sci., 1 (2014) 29–37.
  62. M.A. Zazouli, D. Balarak, Y. Mahdavi, Effect of Azolla filiculoides on removal of Reactive Red 198 in aqueous solution, J. Adv. Environ. Health Res., 1 (2013) 44–50.
  63. L.J. Umali, J.R. Duncan, J.E. Burgess, Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater, Biotechnol. Lett., 28 (2006) 45–50.
  64. D. Balarak, R.A. Dianati Tilak, Z. Yousefi, M.A. Zazouli, J. Yazdani, Y. Esfandyari, Phytodegradation potential of phenol from aqueous solution by Azolla filiculoides, J. Biorem. Biodegrad., 5 (2014) 66,
    doi: 10.1186/2052-336X-12-66.
  65. M.A. Zazouli, A.H. Mahvi, S. Dobaradaran, M. Barafrashtehpour, Y. Mahdavi, D. Balarak, Adsorption of fluoride from aqueous solution by modified Azolla filiculoides, Adsorption, 47 (2014) 349–358.
  66. S. Taghilou, M. Peyda, M.R. Mehrasbi, Modeling of wastewater treatment by Azolla filiculoides using response surface methodology, J. Environ. Health Sci. Eng., 19 (2021) 1723–1733.
  67. P. Jayasundara, Wastewater treatment by Azolla: a review, Diyala Agric. Sci. J., 14 (2022) 40–46.
  68. P.K. Rai, Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata, Int. J. Phytorem., 10 (2008) 430–439.
  69. M.A. Zazouli, Y. Mahdavi, E. Bazrafshan, D. Balarak, Phytodegradation potential of bisphenol A from aqueous solution by Azolla filiculoides, J. Environ. Health Sci. Eng., 12 (2014) 66, doi: 10.1186/2052-336X-12-66.
  70. N.Z. Mamat, S.R.S. Abdullah, H.A. Hasan, N.I. Ismail, S.S.N. Sharuddin, Polishing of treated palm oil mill effluent using Azolla pinnata, J. Biochem. Microbiol. Biotechnol., 10 (2022) 40–45.
  71. L. Polechońska, E. Szczęśniak, A. Klink, Comparative analysis of trace and macro-element bioaccumulation in four freefloating macrophytes in area contaminated by copper smelter, Int. J. Phytorem., 24 (2022) 324–333.
  72. F.R. El Awady, M.A. Abbas, A.M. Abdelghany, Y.A. El-Amier, Silver modified hydrophytes for heavy metal removal from different water resources, Biointerface Res. Appl. Chem., 11 (2021) 14555–14563.
  73. L.A. Ndeda, S. Manohar, Bioconcentration factor and translocation ability of heavy metals within different habitats of hydrophytes in Nairobi Dam, Kenya, J. Environ. Sci. Toxicol. Food Technol., 8 (2014) 42–45.
  74. Q. Hasani, N. Pratiwi, H. Effendi, Y. Wardiatno, J.A.R. Guk Guk, H.W. Maharani, M. Rahman, Azolla pinnata as phytoremediation agent of iron (Fe) in ex sand mining waters, J. Nat. Sci., 20 (2021) 1–12.
  75. I.V. Seregin, A.D. Kozhevnikova, Phytochelatins: sulfurcontaining metal(loid)-chelating ligands in plants, Int. J. Mol. Sci., 24 (2023) 2430, doi: 10.3390/ijms24032430.
  76. M. Talebi, B.E.S. Tabatabaei, H. Akbarzadeh, Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes, Chemosphere, 230 (2019) 488–497.
  77. A. Sood, P.L. Uniyal, R. Prasanna, A.S. Ahluwalia, Phytoremediation potential of aquatic macrophyte, Azolla, AMBIO, 41 (2012) 122–137.
  78. L.G. de Araujo, L.C. Vieira, R.L.S. Canevesi, E.A. da Silva, T. Watanabe, R.V. de Padua Ferreira, J.T. Marumo, Biosorption of uranium from aqueous solutions by Azolla sp. and Limnobium laevigatum, Environ. Sci. Pollut. Res., 29 (2022) 45221–45229.
  79. R. Bennicelli, Z. Stępniewska, A. Banach, K. Szajnocha, J. Ostrowski, The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal wastewater, Chemosphere, 55 (2004) 141–146.
  80. M. Hassanzadeh, R. Zarkami, R. Sadeghi, Uptake and accumulation of heavy metals by water body and Azolla filiculoides in the Anzali wetland, Appl. Water Sci., 11 (2021) 91, doi: 10.1007/s13201-021-01428-y.
  81. L.M. Madikizela, Removal of organic pollutants in water using water hyacinth (Eichhornia crassipes), J. Environ. Manage., 295 (2021) 113153, doi: 10.1016/j.jenvman.2021.113153.
  82. I. Maldonado, A.P. Vega Quispe, D. Merma Chacca, F. Zirena Vilca, Optimization of the elimination of antibiotics by Lemna gibba and Azolla filiculoides using response surface methodology (RSM), Front. Environ. Sci., 10 (2022), doi: 10.3389/fenvs.2022.940971.
  83. T.J. Al-Musawi, N. Mengelizadeh, M. Taghavi, S. Mohebi, D. Balarak, Activated carbon derived from Azolla filiculoides fern: a high-adsorption-capacity adsorbent for residual ampicillin in pharmaceutical wastewater, Biomass Convers. Biorefin., (2021) 1–13, doi: 10.1007/s13399-021-01962-4.
  84. I. Maldonado, E.G. Moreno Terrazas, F.Z. Vilca, Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: state-of-art focus on antibiotics, Sci. Total Environ., 838 (2022) 156565, doi: 10.1016/j.scitotenv.2022.156565.
  85. A.A. Adelodun, T. Olajire, N.O. Afolabi, A.S. Akinwumiju, E. Akinbobola, U.O. Hassan, Phytoremediation potentials of Eichhornia crassipes for nutrients and organic pollutants from textile wastewater, Int. J. Phytorem., 23 (2021) 1333–1341.
  86. R. Prasad, D. Sharma, K.D. Yadav, H. Ibrahim, Preliminary study on greywater treatment using water hyacinth, Appl. Water Sci., 11 (2021) 1–8.
  87. A. Sarkar, N. Gogoi, S. Roy, Bisphenol-A incite dosedependent dissimilitude in the growth pattern, physiology, oxidative status, and metabolite profile of Azolla filiculoides, Environ. Sci. Pollut. Res. Int., 29 (2022) 91325–91344.
  88. T. Kösesakal, M. Seyhan, Naphthalene stress responses of the aquatic fern Azolla filiculoides Lam. and evaluation of phytoremediation potential, Polycyclic Aromat. Compd., (2022) 1–18, doi: 10.1080/10406638.2022.2126505.
  89. T. Kösesakal, M. Seyhan, Phenanthrene stress response and phytoremediation potential of free-floating fern Azolla filiculoides Lam, Int. J. Phytorem., 25 (2023) 207–220.
  90. E. Bianchi, A. Biancalani, C. Berardi, A. Antal, D. Fibbi, A. Coppi, L. Lastrucci, N. Bussotti, I. Colzi, L. Renai, C. Scordo, M.D. Bubba, C. Gonnelli, Improving the efficiency of wastewater treatment plants: bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta, Sci. Total Environ., 746 (2020) 141219, doi: 10.1016/j.scitotenv.2020.141219.
  91. A. Abd Kadir, S.R.S. Abdullah, B.A. Othman, H.A. Hasan, A.R. Othman, M.F. Imron, N’I. Ismail, S.B. Kurniawan, Dual function of Lemna minor and Azolla pinnata as phytoremediator for palm oil mill effluent and as feedstock, Chemosphere, 259 (2020) 127468, doi: 10.1016/j.chemosphere.2020.127468.
  92. National Research Council, Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy, Washington, D.C, 2012, p. 416.
  93. W. Zhang, A.Y. Elaine, S. Rozelle, J. Yang, S. Msangi, The impact of biofuel growth on agriculture: why is the range of estimates so wide?, Food Policy, 38 (2013) 227–239.
  94. M. Battaglia, W. Thomason, J.H. Fike, G.K. Evanylo, M.V. Cossel, E. Babur, Y. Iqbal, A.A. Diatta, The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: a review, GCB Bioenergy, 13 (2021) 45–57.
  95. T.G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad, E.D. Van Hullebusch, S. Rtimi, Emerging technologies for biofuel production: a critical review on recent progress, challenges and perspectives, J. Environ. Manage., 290 (2021) 112627, doi: 10.1016/j.jenvman.2021.112627.
  96. A. Arora, P. Nandal, A. Chaudhary. Critical evaluation of novel applications of aquatic weed Azolla as sustainable feedstock for deriving bioenergy and feed supplement, Environ. Rev., (2022),
    doi: 10.1139/er-2022-0033.
  97. H.Z. Hamdan, A.F. Houri, CO2 sequestration by propagation of the fast-growing Azolla spp., Environ. Sci. Pollut. Res., 29 (2022) 16912–16924.
  98. S. Sathish, S. Supriya, P. Andal, D. Prabu, M. Rajasimman, S. Ansar, S. Rezania, Effective utilization of Azolla filiculoides for biodiesel generation using graphene oxide nano catalyst derived from agro-waste, Fuel, 329 (2022) 125412, doi: 10.1016/j.fuel.2022.125412.
  99. A.F. Miranda, B. Biswas, N. Ramkumar, R. Singh, J. Kumar, A. James, F. Roddick, B. Lal, S. Subudhi, Th. Bhaskar, A. Mouradov. Aquatic plant Azolla as the universal feedstock for biofuel production, Biotechnol. Biofuels, 9 (2016) 1–17.
  100. D. Kannan, W. Christraj, Emission analysis of Azolla methyl ester with BaO nano additives for IC engine, Energy Sources Part A, 40 (2018) 1234–1241.
  101. N. Bose, Production and characterization of biodiesel using Azolla pinnata, Jr. Ind. Pollut. Control, 34 (2018) 1833–1838.
  102. S.K. Jain, G.S. Gujral, N.K. Jha, P. Vasudevan, Production of biogas from Azolla pinnata R. Br and Lemna minor L.: effect of heavy metal contamination, Bioresour. Technol., 41 (1992) 273–277.
  103. A. Mudhoo, S. Kumar, Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass, Int. J. Environ. Sci. Technol., 10 (2013) 1383–1398.
  104. C. Paoletti, F. Bocci, G. Lercker, P. Capella, R. Materassi, Lipid composition of Azolla caroliniana biomass and its seasonal variation, Phytochemistry, 26 (1987) 1045–1047.
  105. N.T. Taha Al-Taee, E.S. Mostafa, S.K. Al-Taee, A.A. Abd-Alnafi Al-Aaraji, Impact of Azolla on the histopathology of the liver and intestine of the fingerling carp Cyprinus carpio, Egypt. J. Aquat. Biol. Fish., 26 (2022) 373–384.
  106. A.L. Pereira, L.J. Bessa, P.N. Leão, V. Vasconcelos, P.M. da Costa, Bioactivity of Azolla aqueous and organic extracts against bacteria and fungi, Symbiosis, 65 (2015) 17–21.