References
- M.S. Refat, H.A. Saad, A.M.A. Adam, Spectral, thermal and
kinetic studies of charge-transfer complexes formed between
the highly effective antibiotic drug metronidazole and two
types of acceptors: σ- and π-acceptors, Spectrochim. Acta A,
141 (2015) 202–210.
- C. Ho, D. Sin, K. Wong, H. Tang, Determination of dimetridazole
and metronidazole in poultry and porcine tissues by gas
chromatography-electron capture negative ionization mass
spectrometry, Anal. Chim. Acta, 530 (2005) 23–31.
- Y. Vasseghian, E.-N. Dragoi, F. Almomani, Graphene-based
materials for metronidazole degradation: a comprehensive
review, Chemosphere, 286 (2022) 131727, doi: 10.1016/j.chemosphere.2021.131727.
- C. Mahugo-Santana, Z. Sosa-Ferrera, M.E. Torres-Padrón,
J.J. Santana-Rodríguez, Analytical methodologies for the
determination of nitroimidazole residues in biological and
environmental liquid samples: a review, Anal. Chim. Acta,
665 (2010) 113–122.
- C.S. Thompson, I.M. Traynor, T.L. Fodey, S.R. Crooks, Improved
screening method for the detection of a range of nitroimidazoles
in various matrices by optical biosensor, Anal. Chim. Acta,
637 (2009) 259–264.
- J. Zhou, J. Shen, X. Xue, J. Zhao, Y. Li, J. Zhang, S. Zhang,
Simultaneous determination of nitroimidazole residues in
honey samples by high-performance liquid chromatography
with ultraviolet detection, J. AOAC Int., 90 (2007) 872–878.
- X. Xia, X. Li, S. Ding, S. Zhang, H. Jiang, J. Li, J. Shen,
Determination of 5-nitroimidazoles and corresponding
hydroxy metabolites in swine kidney by ultra-performance
liquid chromatography coupled to electrospray tandem mass
spectrometry, Anal. Chim. Acta, 637 (2009) 79–86.
- N. Tavakoli, J. Varshosaz, F. Dorkoosh, M.R. Zargarzadeh,
Development and validation of a simple HPLC method
for simultaneous in vitro determination of amoxicillin and
metronidazole at single wavelength, J. Pharm. Biomed.,
43 (2007) 325–329.
- S. Shi, H. Yu, F. Yang, W. Yao, Y Xie, Simultaneous determination
of 14 nitroimidazoles using thin-layer chromatography combined
with surface-enhanced Raman spectroscopy (TLC-SERS),
Food Biosci., 48 (2022) 101755, doi: 10.1016/j.fbio.2022.101755.
- P. Nagaraja, K. Sunitha, R. Vasantha, H. Yathirajan,
Spectrophotometric determination of metronidazole and
tinidazole in pharmaceutical preparations, J. Pharm. Biomed.,
28 (2002) 527–535.
- T. Saffaj, M. Charrouf, A. Abourriche, Y. Abboud, A. Bennamara,
M. Berrada, Spectrophotometric determination of metronidazole
and secnidazole in pharmaceutical preparations,
Il Farmaco, 59 (2004) 843–846.
- T. Saffaj, M. Charrouf, A. Abourriche, Y. Aboud, A. Bennamara,
M. Berrada, Spectrophotometric determination of metronidazole
and secnidazole in pharmaceutical preparations based
on the formation of dyes, Dyes Pigm., 70 (2006) 259–262.
- T. Alizadeh, M.R. Ganjali, M. Zare, P. Norouzi, Selective
determination of chloramphenicol at trace level in milk
samples by the electrode modified with molecularly imprinted
polymer, Food Chem., 130 (2012) 1108–1114.
- K. Huang, Q. Jing, Z. Wu, L. Wang, C. Wei, Enhanced sensing
of dopamine in the present of ascorbic acid based on graphene/poly (p-aminobenzoic acid) composite film, Colloids Surf., B,
88 (2011) 310–314.
- A. Hernández-Jiménez, G. Roa-Morales, H. Reyes-Pérez,
P. Balderas-Hernández, C.E. Barrera-Díaz,
M. Bernabé-Pineda,
Voltammetric determination of metronidazole using a sensor
based on electropolymerization of α‐cyclodextrin over a
carbon paste electrode, Electroanalysis: An Int. J. Devoted
Electroanal. Sens. Bioelectron. Dev., 28 (2016) 704–710.
- S. Sadeghi, M. Hemmati, A. Garmroodi, Preparation of
Ag-nanoparticles/ionic-liquid modified screen-printed
electrode and its application in the determination of
metronidazole, Electroanalysis: An Int. J. Devoted Electroanal.
Sens. Bioelectron. Dev., 25 (2013) 316–322.
- J. Huang, X. Shen, R. Wang, Q. Zeng, L Wang, A highly sensitive
metronidazole sensor based on a Pt nanospheres/polyfurfural
film modified electrode, RSC Adv., 7 (2017) 535–542.
- J. Peng, C. Hou, X. Hu, Determination of metronidazole
in pharmaceutical dosage forms based on reduction at
graphene and ionic liquid composite film modified electrode,
Sens. Actuators, B, 169 (2012) 81–87.
- M.B. Gholivand, M. Torkashvand, A novel high selective
and sensitive metronidazole voltammetric sensor based on
a molecularly imprinted polymer-carbon paste electrode,
Talanta, 84 (2011) 905–912.
- H. Chen, X. Wu, R. Zhao, Z. Zheng, Q. Yuan, Z. Dong,
W. Gan, Preparation of reduced graphite oxide loaded with
cobalt(II) and nitrogen co-doped carbon polyhedrons from a
metal–organic framework (type ZIF-67), and its application to
electrochemical determination of metronidazole, Microchim.
Acta, 186 (2019) 623, doi: 10.1007/s00604-019-3737-6.
- M. Wang, Y. Zhang, S. Bao, Y. Yu, C. Ye, Ni(II)-based metal–organic framework anchored on carbon nanotubes for
highly sensitive non-enzymatic hydrogen peroxide sensing,
Electrochim. Acta, 190 (2016) 365–370.
- Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, In-situ fabrication
of graphene oxide hybrid Ni-based metal-organic framework
(Ni-MOFs@GO) with ultrahigh capacitance as electrochemical
pseudocapacitor materials, ACS Appl. Mater. Interfaces,
8 (2016) 28904–28916.
- M. Yue, Y. Jiang, L. Zhang, C. Yu, K. Zou, Z. Li, Solvent-induced
cadmium(II) metal-organic frameworks with adjustable guestevacuated
porosity: application in the controllable assembly
of MOF-derived porous carbon materials for supercapacitors,
Chem. Eur. J., 23 (2017) 15680–15693.
- R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang,
Morphology-dependent electrochemical properties of
cobalt-based metal organic frameworks for supercapacitor
electrode materials, Electrochim. Acta, 267 (2018) 170–180.
- J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, Metal–organic
frameworks: a new promising class of materials for a highperformance
supercapacitor electrode, J. Mater. Chem. A,
2 (2014) 16640–16644.
- T.P. Mofokeng, A.K. Ipadeola, Z.N. Tetana, K.I. Ozoemena,
Defect-engineered nanostructured Ni/MOF-derived carbons
for an efficient aqueous battery-type energy storage device,
ACS Omega, 5 (2020) 20461–20472.
- G. Zhu, H. Wen, M. Min, W. Wang, L. Yang, L. Wang,
X. Shi, X. Cheng, X. Sun, Y. Yao, A self-supported hierarchical
Co-MOF as a supercapacitor electrode with ultrahigh areal
capacitance and excellent rate performance, Chem. Commun.,
54 (2018) 10499–10502.
- R. Wang, W. Su, S. Zhang, L. Jin, J. Zhang, H. Bian, Y. Zhang,
Application of lignin-derived graphene quantum dots in visible
light-driven photoelectrochemical photodetector, Adv. Opt.
Mater., (2023) 2202944, doi: 10.1002/adom.202202944.
- X. Zhang, N. Qu, S. Yang, Q. Fan, D. Lei, A. Liu, X. Chen, Shapecontrolled
synthesis of Ni-based metal-organic frameworks
with albizia flower-like spheres@nanosheets structure for
high performance supercapacitors, J. Colloid Interface Sci.,
575 (2020) 347–355.
- B. Shapira, E. Avraham, D. Aurbach, Side reactions in capacitive
deionization (CDI) processes: the role of oxygen reduction,
Electrochim. Acta, 220 (2016) 285–295.
- S. Meenakshi, S.J. Sophia, K.J.M. Pandian, High surface
graphene nanoflakes as sensitive sensing platform for
simultaneous electrochemical detection of metronidazole and
chloramphenicol, Mater. Sci. Eng. C, 90 (2018) 407–419.
- S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, Facile synthesis
of cuboid Ni-MOF for high-performance supercapacitors,
J. Mater. Sci., 53 (2018) 6807–6818.
- D. Chen, J. Deng, J. Liang, J. Xie, C. Hu, K. Huang, A core-shell
molecularly imprinted polymer grafted onto a magnetic glassy
carbon electrode as a selective sensor for the determination
of metronidazole, Sens. Actuators, B, 183 (2013) 594–600.
- A. Hájková, J. Hraníček, J. Barek, V. Vyskočil, Voltammetric
determination of trace amounts of 2-aminofluoren-9-one at a
mercury meniscus modified silver solid amalgam electrode,
Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectron.
Dev., 25 (2013) 295–302.
- A. Mao, H. Li, L. Yu, X. Hu, Electrochemical sensor based on
multi-walled carbon nanotubes and chitosan-nickel complex
for sensitive determination of metronidazole, J. Electroanal.
Chem., 799 (2017) 257–262.
- P. Dauphin-Ducharme, N. Arroyo-Currás, M. Kurnik, G. Ortega,
H. Li, K.W. Plaxco, Simulation-based approach to determining
electron transfer rates using square-wave voltammetry,
33 (2017) 4407–4413.
- S.E. Kablan, T. Reçber, G. Tezel, S.S. Timur, C. Karabulut,
T. Ce. Karabulut, H. Eroğlu, S. Kır, E. Nemutlu, Voltammetric
sensor for COVID-19 drug Molnupiravir on modified glassy
carbon electrode with electrochemically reduced graphene
oxide, J. Electroanal. Chem., 920 (2022) 116579,
doi: 10.1016/j.jelechem.2022.116579.
- H.B. Ammar, M.B. Brahim, R. Abdelhédi, Y. Samet, Boron-doped
diamond sensor for sensitive determination of metronidazole:
mechanistic and analytical study by cyclic voltammetry
and square wave voltammetry, Mater. Sci. Eng. C, 59 (2016)
604–610.
- B. Rezaei, S. Damiri, Fabrication of a nanostructure thin film
on the gold electrode using continuous pulsed-potential
technique and its application for the electrocatalytic
determination of metronidazole, Electrochim. Acta, 55 (2010)
1801–1808.
- R. Wang, L. Jiao, X. Zhou, Z. Guo, H. Bian, H. Dai, Highly
fluorescent graphene quantum dots from biorefinery waste for
tri-channel sensitive detection of Fe3+ ions, J. Hazard. Mater.,
362 (2016) 315–322.
- J. Peng, C. Hou, X. Hu, Determination of metronidazole
in pharmaceutical dosage forms based on reduction at
graphene and ionic liquid composite film modified electrode,
Sens. Actuators, B, 169 (2012) 81–87.
- A. Salimi, M. Izadi, R. Hallaj, M. Rashidi, Simultaneous
determination of ranitidine and metronidazole at glassy
carbon electrode modified with single wall carbon nanotubes,
Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectron.
Dev., 19 (2007) 1668–1676.
- H. Zhai, Z. Liang, Z. Chen, H. Wang, Z. Liu, Z. Su, Q. Zhou,
Simultaneous detection of metronidazole and chloramphenicol
by differential pulse stripping voltammetry using a silver
nanoparticles/sulfonate functionalized graphene modified
glassy carbon electrode, Electrochim. Acta, 171 (2015) 105–113.
- M.M. Rahman, X.B. Li, Y.D. Jeon, H.J. Lee, S.J. Lee, J.J. Lee,
Simultaneous determination of ranitidine and metronidazole
at poly(thionine) modified anodized glassy carbon electrode,
J. Electrochem. Sci. Technol., 3 (2012) 90–94.
- K. Nejati, K. Asadpour-Zeynali, Electrochemical synthesis
of nickel-iron layered double hydroxide: application as a
novel modified electrode in electrocatalytic reduction of
metronidazole, Mater. Sci. Eng. C, 35 (2014) 179–184.