References

  1. M.S. Refat, H.A. Saad, A.M.A. Adam, Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors, Spectrochim. Acta A, 141 (2015) 202–210.
  2. C. Ho, D. Sin, K. Wong, H. Tang, Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography-electron capture negative ionization mass spectrometry, Anal. Chim. Acta, 530 (2005) 23–31.
  3. Y. Vasseghian, E.-N. Dragoi, F. Almomani, Graphene-based materials for metronidazole degradation: a comprehensive review, Chemosphere, 286 (2022) 131727, doi: 10.1016/j.chemosphere.2021.131727.
  4. C. Mahugo-Santana, Z. Sosa-Ferrera, M.E. Torres-Padrón, J.J. Santana-Rodríguez, Analytical methodologies for the determination of nitroimidazole residues in biological and environmental liquid samples: a review, Anal. Chim. Acta, 665 (2010) 113–122.
  5. C.S. Thompson, I.M. Traynor, T.L. Fodey, S.R. Crooks, Improved screening method for the detection of a range of nitroimidazoles in various matrices by optical biosensor, Anal. Chim. Acta, 637 (2009) 259–264.
  6. J. Zhou, J. Shen, X. Xue, J. Zhao, Y. Li, J. Zhang, S. Zhang, Simultaneous determination of nitroimidazole residues in honey samples by high-performance liquid chromatography with ultraviolet detection, J. AOAC Int., 90 (2007) 872–878.
  7. X. Xia, X. Li, S. Ding, S. Zhang, H. Jiang, J. Li, J. Shen, Determination of 5-nitroimidazoles and corresponding hydroxy metabolites in swine kidney by ultra-performance liquid chromatography coupled to electrospray tandem mass spectrometry, Anal. Chim. Acta, 637 (2009) 79–86.
  8. N. Tavakoli, J. Varshosaz, F. Dorkoosh, M.R. Zargarzadeh, Development and validation of a simple HPLC method for simultaneous in vitro determination of amoxicillin and metronidazole at single wavelength, J. Pharm. Biomed., 43 (2007) 325–329.
  9. S. Shi, H. Yu, F. Yang, W. Yao, Y Xie, Simultaneous determination of 14 nitroimidazoles using thin-layer chromatography combined with surface-enhanced Raman spectroscopy (TLC-SERS), Food Biosci., 48 (2022) 101755, doi: 10.1016/j.fbio.2022.101755.
  10. P. Nagaraja, K. Sunitha, R. Vasantha, H. Yathirajan, Spectrophotometric determination of metronidazole and tinidazole in pharmaceutical preparations, J. Pharm. Biomed., 28 (2002) 527–535.
  11. T. Saffaj, M. Charrouf, A. Abourriche, Y. Abboud, A. Bennamara, M. Berrada, Spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations, Il Farmaco, 59 (2004) 843–846.
  12. T. Saffaj, M. Charrouf, A. Abourriche, Y. Aboud, A. Bennamara, M. Berrada, Spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations based on the formation of dyes, Dyes Pigm., 70 (2006) 259–262.
  13. T. Alizadeh, M.R. Ganjali, M. Zare, P. Norouzi, Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer, Food Chem., 130 (2012) 1108–1114.
  14. K. Huang, Q. Jing, Z. Wu, L. Wang, C. Wei, Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly (p-aminobenzoic acid) composite film, Colloids Surf., B, 88 (2011) 310–314.
  15. A. Hernández-Jiménez, G. Roa-Morales, H. Reyes-Pérez, P. Balderas-Hernández, C.E. Barrera-Díaz,
    M. Bernabé-Pineda, Voltammetric determination of metronidazole using a sensor based on electropolymerization of α‐cyclodextrin over a carbon paste electrode, Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectron. Dev., 28 (2016) 704–710.
  16. S. Sadeghi, M. Hemmati, A. Garmroodi, Preparation of Ag-nanoparticles/ionic-liquid modified screen-printed electrode and its application in the determination of metronidazole, Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectron. Dev., 25 (2013) 316–322.
  17. J. Huang, X. Shen, R. Wang, Q. Zeng, L Wang, A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode, RSC Adv., 7 (2017) 535–542.
  18. J. Peng, C. Hou, X. Hu, Determination of metronidazole in pharmaceutical dosage forms based on reduction at graphene and ionic liquid composite film modified electrode, Sens. Actuators, B, 169 (2012) 81–87.
  19. M.B. Gholivand, M. Torkashvand, A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode, Talanta, 84 (2011) 905–912.
  20. H. Chen, X. Wu, R. Zhao, Z. Zheng, Q. Yuan, Z. Dong, W. Gan, Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal–organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole, Microchim. Acta, 186 (2019) 623, doi: 10.1007/s00604-019-3737-6.
  21. M. Wang, Y. Zhang, S. Bao, Y. Yu, C. Ye, Ni(II)-based metal–organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing, Electrochim. Acta, 190 (2016) 365–370.
  22. Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials, ACS Appl. Mater. Interfaces, 8 (2016) 28904–28916.
  23. M. Yue, Y. Jiang, L. Zhang, C. Yu, K. Zou, Z. Li, Solvent-induced cadmium(II) metal-organic frameworks with adjustable guestevacuated porosity: application in the controllable assembly of MOF-derived porous carbon materials for supercapacitors, Chem. Eur. J., 23 (2017) 15680–15693.
  24. R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang, Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials, Electrochim. Acta, 267 (2018) 170–180.
  25. J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, Metal–organic frameworks: a new promising class of materials for a highperformance supercapacitor electrode, J. Mater. Chem. A, 2 (2014) 16640–16644.
  26. T.P. Mofokeng, A.K. Ipadeola, Z.N. Tetana, K.I. Ozoemena, Defect-engineered nanostructured Ni/MOF-derived carbons for an efficient aqueous battery-type energy storage device, ACS Omega, 5 (2020) 20461–20472.
  27. G. Zhu, H. Wen, M. Min, W. Wang, L. Yang, L. Wang, X. Shi, X. Cheng, X. Sun, Y. Yao, A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance, Chem. Commun., 54 (2018) 10499–10502.
  28. R. Wang, W. Su, S. Zhang, L. Jin, J. Zhang, H. Bian, Y. Zhang, Application of lignin-derived graphene quantum dots in visible light-driven photoelectrochemical photodetector, Adv. Opt. Mater., (2023) 2202944, doi: 10.1002/adom.202202944.
  29. X. Zhang, N. Qu, S. Yang, Q. Fan, D. Lei, A. Liu, X. Chen, Shapecontrolled synthesis of Ni-based metal-organic frameworks with albizia flower-like spheres@nanosheets structure for high performance supercapacitors, J. Colloid Interface Sci., 575 (2020) 347–355.
  30. B. Shapira, E. Avraham, D. Aurbach, Side reactions in capacitive deionization (CDI) processes: the role of oxygen reduction, Electrochim. Acta, 220 (2016) 285–295.
  31. S. Meenakshi, S.J. Sophia, K.J.M. Pandian, High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol, Mater. Sci. Eng. C, 90 (2018) 407–419.
  32. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors, J. Mater. Sci., 53 (2018) 6807–6818.
  33. D. Chen, J. Deng, J. Liang, J. Xie, C. Hu, K. Huang, A core-shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole, Sens. Actuators, B, 183 (2013) 594–600.
  34. A. Hájková, J. Hraníček, J. Barek, V. Vyskočil, Voltammetric determination of trace amounts of 2-aminofluoren-9-one at a mercury meniscus modified silver solid amalgam electrode, Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectron. Dev., 25 (2013) 295–302.
  35. A. Mao, H. Li, L. Yu, X. Hu, Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole, J. Electroanal. Chem., 799 (2017) 257–262.
  36. P. Dauphin-Ducharme, N. Arroyo-Currás, M. Kurnik, G. Ortega, H. Li, K.W. Plaxco, Simulation-based approach to determining electron transfer rates using square-wave voltammetry, 33 (2017) 4407–4413.
  37. S.E. Kablan, T. Reçber, G. Tezel, S.S. Timur, C. Karabulut, T. Ce. Karabulut, H. Eroğlu, S. Kır, E. Nemutlu, Voltammetric sensor for COVID-19 drug Molnupiravir on modified glassy carbon electrode with electrochemically reduced graphene oxide, J. Electroanal. Chem., 920 (2022) 116579,
    doi: 10.1016/j.jelechem.2022.116579.
  38. H.B. Ammar, M.B. Brahim, R. Abdelhédi, Y. Samet, Boron-doped diamond sensor for sensitive determination of metronidazole: mechanistic and analytical study by cyclic voltammetry and square wave voltammetry, Mater. Sci. Eng. C, 59 (2016) 604–610.
  39. B. Rezaei, S. Damiri, Fabrication of a nanostructure thin film on the gold electrode using continuous pulsed-potential technique and its application for the electrocatalytic determination of metronidazole, Electrochim. Acta, 55 (2010) 1801–1808.
  40. R. Wang, L. Jiao, X. Zhou, Z. Guo, H. Bian, H. Dai, Highly fluorescent graphene quantum dots from biorefinery waste for tri-channel sensitive detection of Fe3+ ions, J. Hazard. Mater., 362 (2016) 315–322.
  41. J. Peng, C. Hou, X. Hu, Determination of metronidazole in pharmaceutical dosage forms based on reduction at graphene and ionic liquid composite film modified electrode, Sens. Actuators, B, 169 (2012) 81–87.
  42. A. Salimi, M. Izadi, R. Hallaj, M. Rashidi, Simultaneous determination of ranitidine and metronidazole at glassy carbon electrode modified with single wall carbon nanotubes, Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectron. Dev., 19 (2007) 1668–1676.
  43. H. Zhai, Z. Liang, Z. Chen, H. Wang, Z. Liu, Z. Su, Q. Zhou, Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode, Electrochim. Acta, 171 (2015) 105–113.
  44. M.M. Rahman, X.B. Li, Y.D. Jeon, H.J. Lee, S.J. Lee, J.J. Lee, Simultaneous determination of ranitidine and metronidazole at poly(thionine) modified anodized glassy carbon electrode, J. Electrochem. Sci. Technol., 3 (2012) 90–94.
  45. K. Nejati, K. Asadpour-Zeynali, Electrochemical synthesis of nickel-iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole, Mater. Sci. Eng. C, 35 (2014) 179–184.