References

  1. N. Cheng, B. Wang, P. Wu, X. Lee, Y. Xing, M. Chen, B. Gao, Adsorption of emerging contaminants from water and wastewater by modified biochar: a review, Environ. Pollut., 273 (2021) 116448, doi: 10.1016/j.envpol.2021.116448.
  2. N.A. Khan, V. Vambol, S. Vambol, B. Bolibrukh, M. Sillanpaa, F. Changani, A. Esrafili, M. Yousefi, Hospital effluent guidelines and legislation scenario around the globe: a critical review, J. Environ. Chem. Eng., 9 (2021) 105874, doi: 10.1016/j.jece.2021.105874.
  3. F. Wahid, S. Baig, M.F. Bhatti, M. Manzoor, I. Ahmed, M. Arshad, Growth responses and rubisco activity influenced by antibiotics and organic amendments used for stress alleviation in Lactuca sativa, Chemosphere, 264 (2021) 128433, doi: 10.1016/j.chemosphere.2020.128433.
  4. R. Mirzaei, M. Yunesian, S. Nasseri, M. Gholami, E. Jalilzadeh, S. Shoeibi, A. Mesdaghinia, Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran, Sci. Total. Environ., 619–620 (2018) 446–459.
  5. Y. Ben, C. Fu, M. Hu, L. Liu, M.H. Wong, C. Zheng, Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review, Environ. Res., 169 (2019) 483–493.
  6. K. Yu, X. Li, L. Chen, J. Fang, H. Chen, Q. Li, N. Chi, J. Ma, Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process, Water Res., 129 (2018) 357–364.
  7. G. Feng, H. Huang, Y. Chen, Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: a review, J. Hazard. Mater., 420 (2021) 126602, doi: 10.1016/j. jhazmat.2021.126602.
  8. N.A. Khan, S.U. Khan, S. Ahmed, I.H. Farooqi, M. Yousefi, A.A. Mohammadi, F. Changani, Recent trends in disposal and treatment technologies of emerging-pollutants-a critical review, TrAC, Trends Anal. Chem., 122 (2020) 115744, doi: 10.1016/j.trac.2019.115744.
  9. H.A. Ahmad, S. Ahmad, Q. Cui, Z. Wang, H. Wei, X. Chen, S.-Q. Ni, S. Ismail, H.M. Awad, A. Tawfik, The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: a review, Sci. Total Environ., 809 (2022) 151926, doi: 10.1016/j.scitotenv.2021.151926.
  10. X. Ao, W. Liu, W. Sun, M. Cai, Z. Ye, C. Yang, Z. Lu, C. Li, Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: kinetics, mechanism, and genotoxicity, Chem. Eng. J., 345 (2018) 87–97.
  11. M. Yousefi, M. Gholami, V. Oskoei, A.A. Mohammadi, M. Baziar, A. Esrafili, Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: process optimization using GA and RSM techniques, J. Environ. Chem. Eng., 9 (2021) 105677, doi: 10.1016/j.jece.2021.105677.
  12. A. Dehghan, A.A. Mohammadi, M. Yousefi, A.A. Najafpoor, M. Shams, S. Rezania, Enhanced kinetic removal of ciprofloxacin onto metal-organic frameworks by sonication, process optimization and metal leaching study, Nanomaterials, 9 (2019) 1422, doi: 10.3390/nano9101422.
  13. H. Park, C.D. Vecitis, J. Cheng, N.F. Dalleska, B.T. Mader, M.R. Hoffmann, Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm, Photochem. Photobiol. Sci., 10 (2011) 1945–1953.
  14. N.H. Tran, H. Chen, M. Reinhard, F. Mao, K.Y.-H. Gin, Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes, Water Res., 104 (2016) 461–472.
  15. A.S. Ajibola, O.A. Amoniyan, F.O. Ekoja, F.O. Ajibola, QuEChERS approach for the analysis of three fluoroquinolone antibiotics in wastewater: concentration profiles and ecological risk in two Nigerian hospital wastewater treatment plants, Arch. Environ. Contam. Toxicol., 80 (2021) 389–401.
  16. R. Wajahat, A. Yasar, A.M. Khan, A.B. Tabinda, S.G. Bhatti, Ozonation and photo-driven oxidation of ciprofloxacin in pharmaceutical wastewater: degradation kinetics and energy requirements, Pol. J. Environ. Stud., 28 (2019) 1–6.
  17. P.Y. Motlagh, S. Akay, B. Kayan, A. Khataee, Ultrasonic assisted photocatalytic process for degradation of ciprofloxacin using TiO2-Pd nanocomposite immobilized on pumice stone, J. Ind. Eng. Chem., 104 (2021) 582–591.
  18. Z. Chen, W. Lai, Y. Xu, G. Xie, W. Hou, P. Zhanchang, C. Kuang, Y. Li, Anodic oxidation of ciprofloxacin using different graphite felt anodes: kinetics and degradation pathways, J. Hazard. Mater., 405 (2021) 124262, doi: 10.1016/j.jhazmat.2020.124262.
  19. F. Du, Z. Lai, H. Tang, H. Wang, C. Zhao, Construction and application of BiOCl/Cu-doped Bi2S3 composites for highly efficient photocatalytic degradation of ciprofloxacin, Chemosphere, 287 (2022) 132391, doi: 10.1016/j.chemosphere.2021.132391.
  20. C.A. Igwegbe, S.N. Oba, C.O. Aniagor, A.G. Adeniyi, J.O. Ighalo, Adsorption of ciprofloxacin from water: a comprehensive review, J. Ind. Eng. Chem., 93 (2021) 57–77.
  21. A. Alinejad, H. Akbari, M. Ghaderpoori, A.K. Jeihooni, A. Adibzadeh, Catalytic ozonation process using a MgO nanocatalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatment, RSC Adv., 9 (2019) 8204–8214.
  22. B. Kamarehie, A. Jafari, M. Ghaderpoori, M. Amin Karami, K. Mousavi, A. Ghaderpoury, Catalytic ozonation process using PAC/γ-Fe2O3 to Alizarin Red S degradation from aqueous solutions: a batch study, Chem. Eng. Commun., 206 (2019) 898–908.
  23. M. Massoudinejad, H. Keramati, M. Ghaderpoori, Investigation of photo-catalytic removal of arsenic from aqueous solutions using UV/H2O2 in the presence of ZnO nanoparticles, Chem. Eng. Commun., 207 (2020) 1605–1615.
  24. H. Azarpira, M. Sadani, M. Abtahi, N. Vaezi, S. Rezaei, Z. Atafar, S.M. Mohseni, M. Sarkhosh, M. Ghaderpoori, H. Keramati, R. Hosseini Pouya, A. Akbari, V. Fanai, Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: performance, kinetic, degradation pathway, energy consumption and toxicology, J. Photochem. Photobiol., A, 371 (2019) 423–432.
  25. B. Kamarehie, M. Ghaderpoori, A. Ghaderpoury, A. Alinejadg, R. Heydari, Catalytic ozonation process using MgO-PAC to degrade Bisphenol A from aqueous solutions, Desal. Water Treat., 184 (2020) 232–242.
  26. M. Dolatabadi, T. Świergosz, C. Wang, S. Ahmadzadeh, Accelerated degradation of groundwater-containing malathion using persulfate activated magnetic Fe3O4/graphene oxide nanocomposite for advanced water treatment, Arabian J. Chem., 16 (2023) 104424, doi: 10.1016/j.arabjc.2022.104424.
  27. Z. Sun, C. Zhang, P. Chen, Q. Zhou, M.R. Hoffmann, Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/iodide process, Water Res., 127 (2017) 50–58.
  28. J. Zhang, H. Zhang, X. Liu, F. Cui, Z. Zhao, Efficient reductive and oxidative decomposition of haloacetic acids by the vacuum-ultraviolet/sulfite system, Water Res., 210 (2022) 117974, doi: 10.1016/j.watres.2021.117974.
  29. T. Rasolevandi, S. Naseri, H. Azarpira, A. Mahvi, Photodegradation of dexamethasone phosphate using UV/iodide process: kinetics, intermediates, and transformation pathways, J. Mol. Liq., 295 (2019) 111703, doi: 10.1016/j.molliq.2019. 111703.
  30. M. Massoudinejad, S.M. Zarandi, M.M. Amini, S.M. Mohseni, Enhancing photo-precipitation of chromate with carboxyl radicals: kinetic, energy analysis and sludge survey, Process Saf. Environ. Prot., 134 (2020) 440–447.
  31. L. Lehr, M. Zanni, C. Frischkorn, R. Weinkauf, D. Neumark, Electron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters, Science, 284 (1999) 635–638.
  32. H.A. Schwarz, Free radicals generated by radiolysis of aqueous solutions, J. Chem. Educ., 58 (1981) 101, doi: 10.1021/ed058p101.
  33. H. Tian, Y. Guo, B. Pan, C. Gu, H. Li, S.A. Boyd, Enhanced photoreduction of nitro-aromatic compounds by hydrated electrons derived from indole on natural montmorillonite, Environ. Sci. Technol., 49 (2015) 7784–7792.
  34. S. Azizi, M. Sarkhosh, A.A. Najafpoor, S.M. Mohseni, M. Mazza, M. Sadani, Degradation of Codeine Phosphate by simultaneous usage of eaq and OH radicals in photo-redox processes: influencing factors, energy consumption, kinetics, intermediate products and degradation pathways, Optik, 243 (2021) 167415, doi: 10.1016/j.ijleo.2021.167415.
  35. H. Azarpira, M. Abtahi, M. Sadani, S. Rezaei, Z. Atafar, S.M. Mohseni, M. Sarkhosh, M. Shanbedi, H. Alidadi, Y. Fakhri, Photo-catalytic degradation of trichlorophenol with UV/sulfite/ZnO process, simultaneous usage of homogeneous reductive and heterogeneous oxidative agents generator as a new approach of advanced oxidation/reduction processes (AO/RPs), J. Photochem. Photobiol., A, 374 (2019) 43–51.
  36. P. Calza, E. Pelizzetti, Reactivity of chloromethanes with photogenerated hydrated electrons, J. Photochem. Photobiol., A, 162 (2004) 609–613.
  37. J.A. Khan, N.S. Shah, S. Nawaz, M. Ismail, F. Rehman, H.M. Khan, Role of eaq, OH and H in radiolytic degradation of atrazine: A kinetic and mechanistic approach, J. Hazard. Mater., 288 (2015) 147–157.
  38. M. Sarkhosh, M. Sadani, M. Abtahi, S.M. Mohseni, A. Sheikhmohammadi, H. Azarpira, A.A. Najafpoor, Z. Atafar, S. Rezaei, R. Alli, A. Bay, Enhancing photodegradation of ciprofloxacin using simultaneous usage of eaq and OH over UV/ZnO/I process: efficiency, kinetics, pathways, and mechanisms, J. Hazard. Mater., 377 (2019) 418–426.
  39. H. Nishiyama, H. Ikeda, T. Saito, B. Kriegel, H. Tsurugi, J. Arnold, K. Mashima, Structural and electronic noninnocence of α-diimine ligands on niobium for reductive C–Cl bond activation and catalytic radical addition reactions, J. Am. Chem. Soc., 139 (2017) 6494–6505.
  40. K. López-Velázquez, J.L. Guzmán-Mar, H.A. Saldarriaga-Noreña, M.A. Murillo-Tovar, L. Hinojosa-Reyes, M. Villanueva-Rodríguez, Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: the role of water quality parameters, Environ. Pollut., 269 (2021) 116223, doi: 10.1016/j.envpol.2020.116223.
  41. G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, The photochemical decomposition and detoxification of Bisphenol A in the VUV/H2O2 process: degradation, mineralization, and cytotoxicity assessment, Chem. Eng. J., 331 (2018) 755–764.
  42. C.-G. Lee, H. Javed, D. Zhang, J.-H. Kim, P. Westerhoff, Q. Li, P.J. Alvarez, Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants, Environ. Sci. Technol., 52 (2018) 4285–4293.
  43. Y. Qi, J. Wei, R. Qu, G. Al-Basher, X. Pan, A.A. Dar, A. Shad, D. Zhou, Z. Wang, Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: reaction kinetics and formation of co-oligomerization products, Chem. Eng. J., 403 (2021) 126396, doi: 10.1016/j.cej.2020.126396.
  44. M. He, Z. Wan, D.C.W. Tsang, Y. Sun, E. Khan, D. Hou, N.J.D. Graham, Performance indicators for a holistic evaluation of catalyst-based degradation—a case study of selected pharmaceuticals and personal care products (PPCPs), J. Hazard. Mater., 402 (2021) 123460, doi: 10.1016/j.jhazmat.2020.123460.
  45. R.K. Singh, L. Philip, S. Ramanujam, Rapid degradation, mineralization and detoxification of pharmaceutically active compounds in aqueous solution during pulsed corona discharge treatment, Water Res., 121 (2017) 20–36.
  46. A.P.H. Association, A.W.W. Association, Standard Methods for the Examination of Water and Wastewater, 1995, pp. 1000–1000.
  47. A. Samzadeh, M. Dehghani, M.A. Baghapour, A. Azhdarpoor, Z. Derakhshan, M. Cvetnić, T. Bolanča, S. Giannakis, Y. Cao, Comparative photo-oxidative degradation of etodolac, febuxostat and imatinib mesylate by UV-C/H2O2 and UV-C/S2O82− processes: modeling, treatment optimization and biodegradability enhancement, Environ. Res., 212 (2022) 113385, doi: 10.1016/j.envres.2022.113385.
  48. Z. Sun, C. Zhang, X. Zhao, J. Chen, Q. Zhou, Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process, J. Hazard. Mater., 329 (2017) 185–192.
  49. V.S.V. Botlaguduru, B. Batchelor, A. Abdel-Wahab, Application of UV–sulfite advanced reduction process to bromate removal, J. Water Process Eng., 5 (2015) 76–82.
  50. H. Milh, X. Yu, D. Cabooter, R. Dewil, Degradation of ciprofloxacin using UV-based advanced removal processes: comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes, Sci. Total Environ., 764 (2021) 144510, doi: 10.1016/j.scitotenv.2020.144510.
  51. M. Sarkhosh, M. Sadani, M. Abtahi, S.M. Mohseni, A. Sheikhmohammadi, H. Azarpira, A.A. Najafpoor, Z. Atafar, S. Rezaei, R. Alli, Enhancing photodegradation of ciprofloxacin using simultaneous usage of eaq and OH over UV/ZnO/I process: efficiency, kinetics, pathways, and mechanisms, J. Hazard. Mater., 377 (2019) 418–426.
  52. X. Li, J. Fang, G. Liu, S. Zhang, B. Pan, J. Ma, Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process, Water Res., 62 (2014) 220–228.
  53. B. Xie, X. Li, X. Huang, Z. Xu, W. Zhang, B. Pan, Enhanced debromination of 4-bromophenol by the UV/sulfite process: efficiency and mechanism, J. Environ. Sci., 54 (2017) 231–238.
  54. B. Jung, R. Nicola, B. Batchelor, A. Abdel-Wahab, Effect of lowand medium-pressure Hg UV irradiation on bromate removal in advanced reduction process, Chemosphere, 117 (2014) 663–672.
  55. X. Yu, D. Cabooter, R. Dewil, Effects of process variables and kinetics on the degradation of 2,4-dichlorophenol using advanced reduction processes (ARP), J. Hazard. Mater., 357 (2018) 81–88.
  56. M. Dolatabadi, M.H. Ehrampoush, M. Pournamdari, A.A. Ebrahimi, H. Fallahzadeh, S. Ahmadzadeh, Simultaneous electrochemical degradation of pesticides from the aqueous environment using
    Ti/SnO2–Sb2O3/PbO2/Bi electrode; process modeling and mechanism insight, Chemosphere, 311 (2023) 137001, doi: 10.1016/j.chemosphere.2022.137001.
  57. A. Rahmah, S. Harimurti, T. Murugesan, Experimental investigation on the effect of wastewater matrix on oxytetracycline mineralization using UV/H2O2 system, Int. J. Environ. Sci. Technol., 14 (2017) 1225–1233.
  58. A. Bianco Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marcì, L. Palmisano, Photocatalytic degradation of Acid Blue 80 in aqueous solutions containing TiO2 suspensions, Environ. Sci. Technol., 35 (2001) 971–976.
  59. E.M. Elsaid, I. Ibrahim, T.Z.A. Wahid, Kinetic and thermodynamic examinations for the unsteady couette flow problem of a plasma using the BGK cylindrical model, Chin. J. Phys., 77 (2022) 161–175.
  60. H. Wang, L. Wang, D. Lin, X. Feng, Y. Niu, B. Zhang, F.-S. Xiao, Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle, Nat. Catal., 4 (2021) 418–424.
  61. G. Moussavi, M. Rezaei, M. Pourakbar, Comparing VUV and VUV/Fe2+ processes for decomposition of cloxacillin antibiotic: degradation rate and pathways, mineralization and by-product analysis, Chem. Eng. J., 332 (2018) 140–149.
  62. L. Wang, D. Kong, Y. Ji, J. Lu, X. Yin, Q. Zhou, Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process, Chemosphere, 181 (2017) 400–408.
  63. C. Liu, V. Nanaboina, G.V. Korshin, W. Jiang, Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater, Water Res., 46 (2012) 5235–5246.
  64. Y. Wang, D. Tian, W. Chu, M. Li, X. Lu, Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin, Sep. Purif. Technol., 212 (2019) 536–544.
  65. D. Kamath, S.P. Mezyk, D. Minakata, Elucidating the elementary reaction pathways and kinetics of hydroxyl radical-induced acetone degradation in aqueous phase advanced oxidation processes, Environ. Sci. Technol., 52 (2018) 7763–7774.
  66. M. Feng, X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, V.K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): effects of water constituents and oxidized products, Water Res., 103 (2016) 48–57.
  67. Z. Wang, X. Cai, X. Xie, S. Li, X. Zhang, Z. Wang, Visible-LED-light-driven photocatalytic degradation of ofloxacin and ciprofloxacin by magnetic biochar modified flowerlike Bi2WO6: the synergistic effects, mechanism insights and degradation pathways, Sci. Total Environ., 764 (2021) 142879, doi: 10.1016/j.scitotenv.2020.142879.
  68. A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, I. Poulios, Photocatalytic degradation and drug activity reduction of chloramphenicol, Water Res., 42 (2008) 386–394.
  69. H. Bouyarmane, C. El Bekkali, J. Labrag, I. Es-saidi, O. Bouhnik, H. Abdelmoumen, A. Laghzizil, J.M. Nunzi, D. Robert, Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/hydroxyapatite nanocomposite materials, Surf. Interfaces, 24 (2021) 101155, doi: 10.1016/j. surfin.2021.101155.
  70. S. Mohan, P. Balakrishnan, Kinetics of ciprofloxacin removal using a sequential two-step ozonation-biotreatment process, Environ. Technol. Innovation, 21 (2021) 101284, doi: 10.1016/j. eti.2020.101284.
  71. M. Shoorangiz, M.R. Nikoo, M. Salari, G.R. Rakhshandehroo, M. Sadegh, Optimized electro-Fenton process with sacrificial stainless steel anode for degradation/mineralization of ciprofloxacin, Process Saf. Environ. Prot., 132 (2019) 340–350.
  72. N. Genç, Improvement of the overall biodegradability of ciprofloxacin by pre-treatment with photocatalytic oxidation of wastewaters, Asian J. Water Environ. Pollut., 13 (2016) 75–81.
  73. M. Sarkhosh, M. Sadani, M. Abtahi, H. Azarpira, H. Alidadi, Z. Atafar, S. Rezaei, S.M. Mohseni, N. Vaezi, Y. Fakhri, H. Keramati, Photo-biological degradation of Bisphenol A, UV/ZnO/iodide process at the center of biological reactor, J. Photochem. Photobiol., A, 374 (2019) 115–124.
  74. A. Sheikhmohammadi, A. Yazdanbakhsh, G. Moussavi, A. Eslami, M. Rafiee, M. Sardar, M. Almasian, Degradation and COD removal of trichlorophenol from wastewater using sulfite anion radicals in a photochemical process combined with a biological reactor: mechanisms, degradation pathway, optimization and energy consumption, Process Saf. Environ. Prot., 123 (2019) 263–271.