References

  1. T. Zheng, J. Jiang, J. Yao, Surfactant-promoted hydrolysis of lignocellulose for ethanol production, Fuel Process. Technol., 213 (2021) 106660, doi: 10.1016/j.fuproc.2020.106660.
  2. V.-F. Ursachi, G. Gutt, Production of cellulosic ethanol from enzymatically hydrolysed wheat straws, Appl. Sci., 10 (2020) 7638, doi: 10.3390/app10217638.
  3. P.A. Johnston, H. Zhou, A. Aui, M.M. Wright, Z. Wen, R.C. Brown, A lignin-first strategy to recover hydroxycinnamic acids and improve cellulosic ethanol production from corn stover, Biomass Bioenergy, 138 (2020) 105579, doi: 10.1016/j.biombioe.2020.105579.
  4. F. Li, C. Chang, Q. Zhang, J. Bai, S. Fang, Cultivation of Chlorella mutant in cellulosic ethanol wastewater using a static mixing airlift photo-bioreactor for simultaneous wastewater treatment, Environ. Prog. Sustainable Energy, 36 (2017) 1274–1281.
  5. D. Kumar, G.S. Murthy, Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production, Biotechnol. Biofuels, 4 (2011) 1–19.
  6. L. Shan, J. Liu, Y. Yu, J.J. Ambuchi, Y. Feng, Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater, Environ. Sci. Pollut. Res., 23 (2016) 10215–10222.
  7. L. Liu, H. Liang, D. Gao, Screening and characterization of northeastern indigenous white rot fungi for treating straw cellulosic ethanol wastewater, Res. Environ. Sci., 31 (2018) 1310–1315.
  8. H. Chen, X. Fu, Industrial technologies for bioethanol production from lignocellulosic biomass, Renewable Sustainable Energy Rev., 57 (2016) 468–478.
  9. L. Shan, J. Liu, Y. Yu, J.J. Ambuchi, Y. Feng, Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater, Environ. Sci. Pollut. Res., 23 (2016) 10215–10222.
  10. Y. Zhao, Study on Treatment of Cellulose Fuel Ethanol Wastewater and Application, Adv. Mater. Res., 777 (2013) 365–369.
  11. S. Yao, L. Xiong, X. Chen, H. Li, X. Chen, Comparative study of lipid production from cellulosic ethanol fermentation wastewaters by four oleaginous yeasts, Prep. Biochem. Biotechnol., 51 (2021) 669–677.
  12. L. Shan, J. Liu, J. Ambuchi, Y. Yu, L. Huang, Y. Feng, Investigation on decolorization of biologically pretreated cellulosic ethanol wastewater by electrochemical method, Chem. Eng. J., 323 (2017) 455–464.
  13. Z.S. Ma, J.H. Ma, Y. Liu, Q.T. Ren, W.X. Li, Process research of ethanol wastewater treatment, Adv. Mater. Res., 807–809 (2013) 1497–1500.
  14. B.M. Jun, S.S. Elanchezhiyan, Y. Yoon, D. Wang, S. Kim, S.M. Prabhu, C.M. Park, Accelerated photocatalytic degradation of organic pollutants over carbonate-rich lanthanumsubstituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV)-activated persulfate, Chem. Eng. J., 393 (2020) 124733, doi: 10.1016/j.cej.2020.124733.
  15. Y.G. Kang, H.C. Vu, Y.Y. Chang, Y.S. Chang, Fe(III) adsorption on graphene oxide: a low-cost and simple modification method for persulfate activation, Chem. Eng. J., 387 (2020) 124012, doi: 10.1016/j.cej.2020.124012.
  16. L. He, H. Chen, L. Wu, Z. Zhang, Y. Ma, J. Zhu, L. Yang, Synergistic heat/UV activated persulfate for the treatment of nanofiltration concentrated leachate, Ecotoxicol. Environ. Saf., 208 (2021) 111522, doi: 10.1016/j.ecoenv.2020.111522.
  17. G. Ji, S. Sun, R. Jia, J. Liu, Z. Yao, M. Wang, L.A. Hou, Study on the removal of humic acid by ultraviolet/persulfate advanced oxidation technology, Environ. Sci. Pollut. Res., 27 (2020) 26079–26090.
  18. M. Tichonovas, E. Krugly, D. Jankunaite, V. Racys, D. Martuzevicius, Ozone-UV-catalysis based advanced oxidation process for wastewater treatment, Environ. Sci. Pollut. Res., 24 (2017) 17584–17597.
  19. Q. Hu, Y. Hu, D. Gao, Research on the enhanced treatment of wastewater from cellulose ethanol production by ozone oxidation process, Ind. Water Treat., 37 (2017) 79–83.
  20. X. Li, L. Yuan, L, Zhao, A comparative study on oxidation of Acidic Red 18 by persulfate with ferrous and ferric ions, Catalysts, 10 (2020) 698, doi: 10.3390/catal10060698.
  21. S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, D.D. Dionysiou, Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes, J. Hazard. Mater., 392 (2020) 122389, doi: 10.1016/j.jhazmat.2020.122389.
  22. R.J. Watts, A.L. Teel, Treatment of contaminated soils and groundwater using ISCO, Pract. Period. Hazard. Toxic Radioact. Waste Manage., 10 (2006) 2–9.
  23. C. Sakulthaew, C. Chokejaroenrat, T. Satapanajaru, T. Chirasatienpon, A. Angkaew, Removal of 17β-estradiol using persulfate synergistically activated using heat and ultraviolet light, Water Air Soil Pollut., 231 (2020) 1–14.
  24. A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: a review on relevant activation mechanisms, performance, and perspectives, Environ. Res., 217 (2023) 114789, doi: 10.1016/j.envres.2022.114789.
  25. C. Qi, X. Liu, C. Lin, H. Zhang, J. Ma, Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants, Chem. Eng. J., 315 (2017) 201–209.
  26. S. Giannakis, K.Y.A. Lin, F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs), Chem. Eng. J., 406 (2021) 127083, doi: 10.1016/j.cej.2020.127083.
  27. H.S. Ou, J. Liu, J.S. Ye, L.L. Wang, J. Ke, Degradation of tris (2-chloroethyl) phosphate by ultraviolet-persulfate: kinetics, pathway and intermediate impact on proteome of Escherichia coli, Chem. Eng. J., 308 (2017) 308386–308395.
  28. Y.T. Lin, J.H. Chen, Feasibility study of ultraviolet activated persulfate oxidation of phenol, Chemosphere, 82 (2010) 1168–1172.
  29. C. Wang, R. Sun, R. Huang, Y. Cao, A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: kinetics and mechanism, Chemosphere, 272 (2021) 129883, doi: 10.1016/j.chemosphere.2021.129883.
  30. Editorial Board of the State Environmental Protection Administration, Monitoring and Analysis Methods of Water and Wastewater, China Environmental Science Press, Beijing, 2002.
  31. Y. Fu, S. Li, Y. Shi, J. Geng, J. Li, G. Wu, H. Ren, Removal of artificial sweeteners using UV/persulfate: radical-based degradation kinetic model in wastewater, pathways and toxicity, Water Res., 167 (2019) 115102, doi: 10.1016/j.watres.2019.115102.
  32. B. Neppolian, H. Jung, H. Choi, J.H. Lee, J.W. Kang, Sonolytic degradation of methyl tert-butyl ether: the role of coupled Fenton process and persulphate ion, Water Res., 36 (2002) 4699–4708.
  33. A. Yaghoot-Nezhad, S. Wacławek, S. Madihi-Bidgoli, A. Hassani, K.Y.A. Lin, F. Ghanbari, Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: a new approach for Bisphenol A degradation in saline wastewater, J. Hazard. Mater., 445 (2023) 130626, doi: 10.1016/j.jhazmat.2022.130626.
  34. J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems, J. Environ. Manage., 156 (2015) 266–275.
  35. W. Zhang, L. Liu, L. Zhang, Study on the degradation of tris(2-chloroethyl) phosphate in water by US/PS system, Environ. Sci. Technol., 43 (2020) 6–11.
  36. S. Al Hakim, S. Jaber, Z.N. Eddine, A. Baalbaki, A. Ghauch, Degradation of theophylline in a UV254/PS system: matrix effect and application to a factory effluent, Chem. Eng. J., 380 (2020) 122478, doi: 10.1016/j.cej.2019.122478.
  37. L. Huang, Z, Li, G. Wang, W. Zhao, Y. Xu, D. Wang, Experimental study on advanced treatment of landfill leachate by ultraviolet catalytic persulfate, Environ. Technol. Innovation, 23 (2021) 101794, doi: 10.1016/j.eti.2021.101794.
  38. F. Ghanbari, M. Riahi, B. Kakavandi, X. Hong, K.Y.A. Lin, Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: kinetic studies, mechanism and effect of anions, J. Water Process Eng., 36 (2020) 101321, doi: 10.1016/j.jwpe.2020.101321.
  39. W. Lian, X. Yi, K. Huang, T. Tang, R. Wang, X. Tao, G. Lu, Degradation of tris (2-chloroethyl) phosphate (TCEP) in aqueous solution by using pyrite activating persulfate to produce radicals, Ecotoxicol. Environ. Saf., 174 (2019) 667–674.
  40. X. Gu, M. Xu, Z. Qiu, Q. Sui, K. Lin, UV activated persulfate technique for 1,1,1-trichloroe-thane degradation in aqueous solution, Res. Environ. Sci., 25 (2012) 1393–1397.
  41. L. Bu, S. Zhou, Z. Shi, L. Deng, G. Li, N. Gao, Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms,and pathways, Environ. Sci. Pollut. Res., 23 (2016) 2848–2855.
  42. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J., 320 (2017) 608–633.
  43. M. Zhang, Y. Song, H. Lin, Y. Liu, J. Li, Y. Zhou, Acetal production wastewater alkaline detoxification pretreatment, Chin. J. Environ. Eng., 10 (2016) 2889–2894.