References

  1. S. David Noel, M.R. Rajan, Impact of dyeing industry effluent on groundwater quality by water quality index and correlation analysis, J. Pollut. Eff. Control., 2 (2014) 1–4, doi: 10.4172/2375–4397.1000126.
  2. I. Qadir, R.C. Chhipa, Comparative studies of some physicochemical characteristics of raw water and effluents of textile industries of Sitapura, Jaipur, Int. J. Adv. Res., 3 (2015) 2444–2449.
  3. F.M. Drumond Chequer, G.A.R. de Oliveira, E.R. Anastacio Ferraz, J. Carvalho Cardoso, M.V. Boldrin Zanoni, D.P. de Oliveir, Textile dyes: dyeing process and environmental impact, M. Günay, Ed., Eco-friendly textile dyeing and finishing, InTechOpen, 2013.
  4. J. Mittal, Permissible synthetic food dyes in India, Resonance, 25 (2020) 567–577.
  5. D.S. Malik, C.K. Jain, A.K. Yadav, R. Kothari, V.V. Pathak, Removal of methylene blue dye in aqueous solution by agricultural waste, Int. Res. J. Eng. Technol., 3 (2016) 864–880.
  6. C.J. Ogugbue, T. Sawidis, Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent, Biotechnol. Res. Int., 2011 (2011) 967925, doi: 10.4061/2011/967925.
  7. C. O’Neill, F.R. Hawkes, D.L. Hawkes, N.D. Lourenço, H.M. Pinheiro, W. Delée, Colour in textile effluents - sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 74 (1999) 1009–1018.
  8. H. Dargo, N. Gabbiye, A. Ayalew, Removal of methylene blue dye from textile wastewater using activated carbon prepared from rice husk, Int. J. Innovation Sci. Res., 9 (2014) 317–325.
  9. M.A. Rahman, S.M.R. Amin, A.M.S. Alam, Removal of methylene blue from wastewater using activated carbon prepared from rice husk, Dhaka Univ. J. Sci., 60 (2012) 185–189.
  10. C. Li, Y. Dong, D. Wu, L. Peng, H. Kong, Surfactant modified zeolite as adsorbent for removal of humic acid from water, Appl. Clay Sci., 52 (2011) 353–357.
  11. H.S. Ashoka, S.S. Inamdar, Adsorption removal of methyl red from aqueous solution with treated sugar bagasse and activated carbon, Global J. Environ. Sci. Res., 4 (2010) 175–182.
  12. W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh, Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation, Chemosphere, 45 (2001) 51–58.
  13. N. Kannan, A. Vijayakumar, P. Subramaniam, Studies on the removal of red industrial dye using teak leaf, maize corn and babool tree bark carbons – a comparison, E-J. Chem., 7 (2010) 770–774.
  14. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arabian J. Chem., 14 (2021) 103186, doi: 10.1016/j.arabjc.2021.103186.
  15. H. Li, R. Qu, C. Li, W. Guo, X. Han, F. He, Y. Ma, B. Xing, Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures, Bioresour. Technol., 163 (2014) 193–198.
  16. S.M. Yakout, A.A.M. Daifullah, S.A. El-Reefy, Adsorption of naphthalene, phenanthrene and pyrene from aqueous solution using low-cost activated carbon derived from agricultural wastes, Adsorpt. Sci. Technol., 31 (2013) 293–302.
  17. J. Lemić, M. Tomašević-Čanović, M. Adamović, D. Kovačević, S. Milićević, Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites, Microporous Mesoporous Mater., 105 (2007) 317–323.
  18. R. Ahmad, I. Hasan, A. Mittal, Adsorption of Cr(VI) and Cd(II) on chitosan grafted polyaniline-OMMT nanocomposite: isotherms, kinetics and thermodynamics studies, Desal. Water Treat., 58 (2017) 144–153.
  19. C. Sutherland, B.S. Chittoo, C. Venkobachar, Application of an artificial neural network-genetic algorithm methodology for modelling and optimisation of the improved biosorption of a chemically modified peat moss: kinetic studies, Desal. Water Treat., 84 (2017) 69–84.
  20. L. Philip, L. Iyengar, C. Venkobachar, Site of interaction of copper on Bacillus polymyxa, Water Air Soil Pollut., 119 (2000) 11–21.
  21. V. Kumar, P. Saharan, A.K. Sharma, A. Umar, I. Kaushal, A. Mittal, Y. Al-Hadeethi, B. Rashad, Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dyesequestration: isotherm studies and RSM modelling approach, Ceram. Int., 46 (2020) 10309–10319.
  22. E.A. Dil, M. Ghaedi, A.M. Ghaedi, A. Asfaram, A. Goudarzi, S. Hajati, M. Soylak, S. Agarwal, V.K. Gupta, Modeling of quaternary dyes adsorption onto ZnO-NR-AC artificial neural network: analysis by derivative spectrophotometry, J. Ind. Eng. Chem., 34 (2016) 186–197.
  23. K.V. Kumar, V. Ramamurthi, S. Sivanesan, Modeling the mechanism involved during the sorption of methylene blue onto fly ash, J. Colloid Interface Sci., 284 (2005) 14–21.
  24. M. Ghaedi, A.M. Ghaedi, F. Abdi, M. Roosta, A. Vafaei, A. Asghari, Principal component analysis-adaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk, Ecotoxicol. Environ. Saf., 96 (2013) 110–117.
  25. S. Dutta, B. Gupta, S.K. Srivastava, A.K. Gupta, Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Mater. Adv., 2 (2021) 4497–4531.
  26. Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone, Adsorpt. Sci. Technol., 34 (2016) 512–525.
  27. S. Karaca, A. Gürses, M. Açıkyıldız, M. Ejder (Korucu), Adsorption of cationic dye from aqueous solutions by activated carbon, Microporous Mesoporous Mater., 115 (2008) 376–382.
  28. J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Activated porous carbon prepared from Paulownia flower for high performance supercapacitor electrodes, Electrochim. Acta, 157 (2015) 290–298.
  29. A. Hassan, H.N. Bhatti, M. Iqbal, A. Nazir, Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye, Z. Phys. Chem. (N F), 235 (2021) 1077–1097.
  30. U. Tezcan Un, F. Ates, N. Erginel, O. Ozcan, E. Oduncu, Adsorption of Disperse Orange 30 dye onto activated carbon derived from Holm Oak (Quercus Ilex) acorns: a 3k factorial design and analysis, J. Environ. Manage., 155 (2015) 89–96.
  31. Y. Bulut, N. Gözübenli, H. Aydin, Equilibrium and kinetics studies for adsorption of Direct blue 71 from aqueous solution by wheat shells, J. Hazard. Mater., 144 (2007) 300–306.
  32. V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  33. F. Uddin, A.R. Khan, H. Tahir, U. Hameed, Adsorption of methylene blue from aqueous solution on the surface of wool fiber and cotton fiber, J. Appl. Sci. Environ. Manage., 9 (2005) 17287, doi: 10.4314/jasem.v9i2.17287.
  34. C.G. Joseph, A. Bono, D. Krishnaiah, K.O. Soon, Sorption studies of methylene blue dye in aqueous solution by optimised carbon prepared from guava seeds (Psidium guajava L.), Mater. Sci. (Medžiagotyra), 13 (2007) 83–87.
  35. O. Hamdaoui, M. Chiha, Removal of methylene blue from aqueous solutions by wheat bran, Acta Chim. Slov., 54 (2007) 407–418.
  36. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste, J. Hazard. Mater., 158 (2008) 499–506.
  37. S.K. Shukla, N.R.S. Al Mushaiqri, H.M. Al Subhi, K. Yoo, H. Al Sadeq, Low-cost activated carbon production from organic waste and its utilization for wastewater treatment, Appl. Water Sci., 10 (2020),
    doi: 10.1007/s13201-020-1145-z.
  38. O.S. Bello, I.A. Adeogun, J.C. Ajaelu, E.O. Fehintola, Adsorption of methylene blue onto activated carbon derived from periwinkle shells: kinetics and equilibrium studies, Chem. Ecol., 24 (2008) 285–295.
  39. U. Kamran, H.N. Bhatti, S. Noreen, M.A. Tahir, S.-J. Park, Chemically modified sugarcane bagasse-based biocomposites for efficient removal of Acid red 1 dye: kinetics, isotherms, thermodynamics, and desorption studies, Chemosphere, 291 (2022) 132796, doi: 10.1016/j.chemosphere.2021.132796.
  40. F.A. Pavan, E.C. Lima, S.L.P. Dias, A.C. Mazzocato, methylene blue biosorption from aqueous solutions by yellow passion fruit waste, J. Hazard. Mater., 150 (2008) 703–712.
  41. B. Das, N.K. Mondal, R. Bhaumik, P. Roy, K.C. Pal, C.R. Das, Removal of copper from aqueous solution using alluvial soil of Indian origin: equilibrium, kinetic and thermodynamic study, J. Mater. Environ. Sci., 4 (2013) 392–408.
  42. S. Saraf, V.K. Vaidya, Statistical optimization of biosorption of Reactive orange 13 by dead biomass of Rhizopus arrhizus NCIM 997 using response surface methodology, Int. J. Ind. Chem., 6 (2015) 93–104.
  43. S.N. Azizi, M. Abrishamkar, H. Kazemian, Using of Taguchi robust design method to optimize effective parameters of methylene blue adsorption on ZSM-5 zeolite, Asian J. Chem., 23 (2011) 100–104.
  44. G. Taguchi, A.J. Rafanelli, Taguchi on robust technology development: bringing quality engineering upstream, J. Electron. Packag., 116 (1994), doi: 10.1115/1.2905506.
  45. C.M. Rao, K. Venkatasubbaiah, Optimization of surface roughness in CNC turning using Taguchi method and ANOVA, Int. J. Adv. Sci. Technol., 93 (2016) 1–14.
  46. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  47. D.C.P. Ambrose, V. Sumithra, K. Vijay, K. Vinodhini, Techniques to improve the shelf life of freshly harvested banana blossoms, Curr. Agric. Res. J., 6 (2018) 141–149.
  48. H. Pfost, V. Headley, Methods of Determining and Expressing Particle Size, Feed Manufacturing Technology, 1976, pp. 512–517.
  49. A. Basker, P.S. Syed Shabudeen, P. Vignesh Kumar, Evaluation of adsorption potential of the agricultural waste areca husk carbon for methylene blue, Int. J. ChemTech Res., 6 (2014) 1309–1324.
  50. U.S. Environmental Protection Agency (USEPA), Fate, Transport, and Transformation Test Guidelines, Adsorption/ Desorption (Batch Equilibrium), Washington, DC, OPPTS 835.1230, 2008, pp. 20–39.
  51. W.J. Weber Jr., C.T. Miller, Modeling the sorption of hydrophobic contaminants by aquifer materials—I. Rates and equilibria, Water Res., 22 (1988) 457–464.
  52. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998a) 332–340.
  53. Y. Ho, G. Mckay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998b) 115–124.
  54. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  55. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
  56. C. Sutherland, C. Venkobachar, A diffusion–chemisorption kinetic model for simulating biosorption using forest macrofungus, Fomes fasciatus, Int. Res. J. Plant Sci., 1 (2010) 107–117.
  57. Z. Aksu, I.A. Isoglu, Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution, J. Hazard. Mater., 137 (2006) 418–430.
  58. M. Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe, P. Le Cloirec, Vanadium(IV) sorption by chitosan: kinetics and equilibrium, Water Res., 30 (1996) 465–475.
  59. T. Furusawa, J.M. Smith, Fluid-particle and intraparticle mass transport rates in slurries, Ind. Eng. Chem. Fundam., 12 (1973) 197–203.
  60. T. Vermeulen, Theory for irreversible and constant-pattern solid diffusion, Ind. Eng. Chem., 45 (1953) 1664–1670.
  61. C. Lao-Luque, M. Solé, X. Gamisans, C. Valderrama, A.D. Dorado, Characterization of chromium(III) removal from aqueous solutions by an immature coal (leonardite). Toward a better understanding of the phenomena involved, Clean Technol. Environ. Policy, 16 (2014) 127–136.
  62. L.K. Lima, B.T. Pelosi, M.G. Silva, M.G. Vieira, Lead and chromium biosorption by Pistia stratiotes biomass, Chem. Eng. Trans., 32 (2013) 1045–1050.
  63. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  64. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Poreand solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  65. E. Swan, A.R. Urquhart, Adsorption equations, J. Phys. Chem., 31 (1927) 251–276.
  66. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 1100–1107.
  67. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024, doi: 10.1021/j150576a611.
  68. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495.
  69. A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  70. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53 (2003) 655–665.
  71. Y. Cao, A. Pawlowski, J. Zhang, Preparation of activated carbons with enhanced adsorption of cationic and anionic dyes from Chinese hickory husk using the Taguchi method, Environ. Prot. Eng., 36 (2010) 69–86.
  72. G. Nagpal, A. Bhattacharya, N.B. Singh, Cu(II) ion removal from aqueous solution using different adsorbents, Desal. Water Treat., 57 (2016) 9789–9798.
  73. C. Sutherland, A. Marcano, B. Chittoo, Artificial neural network-genetic algorithm prediction of heavy metal removal using a novel plant-based biosorbent banana floret: kinetic, equilibrium, thermodynamics and desorption studies, M. Eyvaz, E. Yüksel, Eds., Desalination and Water Treatment, InTechOpen, 2018.
  74. K. Kuśmierek, A. Świątkowski, The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon, React. Kinet. Mech. Catal., 116 (2015) 261–271.
  75. A. Geethakarthi, B.R. Phanikumar, Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: kinetic and equilibrium studies, Int. J. Environ. Sci. Technol. (Tehran), 8 (2011) 561–570.
  76. K.Z. Elwakeel, A.M. Elgarahy, G.A. Elshoubaky, S.H. Mohammad, Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled Sepia shells, J. Environ. Health Sci. Eng., 18 (2020) 35–50.
  77. X. Han, L. Chu, S. Liu, T. Chen, C. Ding, J. Yan, L. Cui, G. Quan, Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar, Bioresources, 10 (2015), doi: 10.15376/biores.10.2.2836-2849.
  78. Y. Guo, S. Yang, K. Yu, J. Zhao, Z. Wang, H. Xu, The preparation and mechanism studies of rice husk based porous carbon, Mater. Chem. Phys., 74 (2002) 320–323.
  79. B.H. Hameed, M.I. El-Khaiary, Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2, J. Hazard. Mater., 157 (2008) 344–351.
  80. C. Ng, J.N. Losso, W.E. Marshall, R.M. Rao, Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system, Bioresour. Technol., 85 (2002) 131–135.
  81. C. Sutherland, C. Venkobachar, Equilibrium modeling of Cu(II) biosorption onto untreated and treated forest macrofungus Fomes fasciatus, Int. J. Plant Animal Environ. Sci., 3 (2013) 193–203.
  82. R.H. Perry, D. Green, Perry’s Chemical Engineer’s Handbook, 7th ed., McGraw-Hill, International Editions, New York, New York, United States, 1999.
  83. S. Islam, K. Ishikawa, Utilization of Bakuhanseki for the removal of cationic dye from aqueous solutions, J. Food Agric. Environ., 8 (2010) 1352–1356.
  84. B.H. Hameed, R.R. Krishni, S.A. Sata, A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions, J. Hazard. Mater., 162 (2009) 305–311.
  85. Q. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu, Applied surface science modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue, Appl. Surf. Sci., 256 (2010) 3309–3315.
  86. D. Ozer, G. Dursun, A. Ozer, Methylene blue adsorption from aqueous solution by dehydrated peanut hull, J. Hazard. Mater., 144 (2007) 171–179.
  87. Y. Bulut, H. Aydın, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194 (2006) 259–267.
  88. O.S. Bello, O.M. Adelaide, M.A. Hammed, Kinetic and equilibrium studies of methylene blue removal from aqueous solution by adsorption on treated sawdust, Maced. J. Chem. Chem. Eng., 29 (2010) 77–85.
  89. M. Dahiru, Z.U. Zango, M.A. Haruna, Cationic dyes removal using low-cost banana peel biosorbent, Am. J. Mater. Sci., 8 (2018) 32–38.
  90. L. Hevira, Zilfa, Rahmayeni, J.O. Ighalo, H. Aziz, R. Zein, Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions, J. Ind. Eng. Chem., 97 (2021) 188–199.
  91. H.D. Bouras, Z. Isik, E.B. Arikan, A.R. Yeddou, N. Bouras, A. Chergui, L. Favier, A. Amrane, N. Dizge, Biosorption characteristics of methylene blue dye by two fungal biomasses, Int. J. Environ. Stud., 78 (2021) 365–381.
  92. T. Teka, S. Enyew, Study on effect of different parameters on adsorption efficiency of low cost activated orange peels for the removal of methylene blue dye, Int. J. Innov. Sci. Res., 8 (2014) 106–111.
  93. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product, Arabian J. Chem., 10 (2017) S1629–S1638.
  94. Y. Omidi Khaniabadi, H. Basiri, A. Jafari, S. Saeedi, G. Goudarzi, F. Taheri, M. Salehi Murkani, Removal of methylene blue from aqueous solution by activated carbon from aloe vera wastes, Jundishapur J. Health Sci., 10 (2016), doi: 10.17795/jjhs-38242.
  95. C. Jarusiripot, Removal of reactive dye by adsorption over chemical pretreatment coal based bottom ash, Procedia Chem., 9 (2014) 121–130.
  96. H. Gebretsadik, A. Gebrekidan, L. Demlie, Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: an alternate low-cost adsorbent, Cogent Chem., 6 (2020) 1720892, doi: 10.1080/23312009.2020.1720892.
  97. A. Ozer, D. Ozer, A. Ozer, The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters, Process Biochem., 39 (2004) 2183–2191.
  98. C. Namasivayam, D. Prabha, M. Kumutha, Removal of direct red and acid brilliant blue by adsorption on to banana pith, Bioresour. Technol., 64 (1998) 77–79.
  99. H.C. Man, W.H. Chin, M.R. Zadeh, M.R.M. Yusof, Adsorption potential of unmodified rice husk for boron removal, BioResources, 7 (2012) 3810–3822.
  100. S. Shakoor, A. Nasar, Utilization of Punica granatum peel as an eco-friendly biosorbent for the removal of methylene blue dye from aqueous solution, J. Appl. Biotechnol. Bioeng., 5 (2018), doi: 10.15406/jabb.2018.05.00145.
  101. F. Chen, L. Xiong, M. Cai, W. Xu, X. Liu, Adsorption of direct fast scarlet 4BS dye from aqueous solution onto natural superfine down particle, Fiber Polym., 16 (2015) 73–78.
  102. R. Kumar, J. Rashid, M.A. Barakat, Synthesis and characterization of a starch-AlOOH-FeS2 nanocomposite for the adsorption of Congo red dye from aqueous solution, RSC Adv., 4 (2014) 38334–38340.
  103. P. Saha, S. Chowdhury, Insight into adsorption thermodynamics, M. Tadashi, Ed., Thermodynamics, InTechOpen, 2011.
  104. A. Nakajima, T. Sakaguchi, Uptake and recovery of gold by immobilized persimmon tannin, J. Chem. Technol. Biotechnol., 57 (1993) 321–326.
  105. A. Delle Site, Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review, J. Phys. Chem. Ref. Data, 30 (2001) 187–439.
  106. T.S. Anirudhan, P.G. Radhakrishnan, Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodyn., 40 (2008) 702–709.
  107. S. Chakravarty, A. Mohanty, T.N. Sudha, A.K. Upadhyay, J. Konar, J.K. Sircar, A. Madhukar, K.K. Gupta, Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos), J. Hazard. Mater., 173 (2010) 502–509.
  108. M.H. Cetin, B. Ozcelik, E. Kuram, E. Demirbas, Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method, J. Cleaner Prod., 19 (2011) 2049–2056.
  109. B.S. Chittoo, C. Sutherland, Phosphate removal and recovery using lime-iron sludge: adsorption, desorption, fractal analysis, modeling and optimization using artificial neural network-genetic algorithm, Desal. Water Treat., 63 (2017) 227–240.
  110. V. Fierro, V. Torné-Fernández, D. Montané, A. Celzard, Adsorption of phenol onto activated carbons having different textural and surface properties, Microporous Mesoporous Mater., 111 (2008) 276–284.
  111. G. McKay, M.J. Bino, A. Altememi, External mass transfer during the adsorption of various pollutants onto activated carbon, Water Res., 20 (1986) 435–442.
  112. J. Ha, C.R. Engler, S.J. Lee, Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads, Biotechnol. Bioeng., 100 (2008) 698–706.
  113. G. McKay, M.S. Otterburn, J.A. Aga, Intraparticle diffusion process occurring during adsorption of dyestuffs, Water Air Soil Pollut., 36 (1987) 381–390.
  114. E. Guibal, C. Milot, J.M. Tobin, Metal-anion sorption by chitosan beads: equilibrium and kinetic studies, Ind. Eng. Chem. Res., 37 (1998) 1454–1463.
  115. I.M. El-Naggar, E.S. Zakaria, I.M. Ali, M. Khalil, M.F. El-Shahat, Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate, Arabian J. Chem. 5 (2012) 109–119, doi: 10.1016/j. arabjc.2010.09.028.
  116. G.E. Boyd, A.W. Adamson, L.S. Myers Jr, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1, J. Am. Chem. Soc. 69 (1947) 2836–2848, doi: 10.1021/ja01203a066.