References

  1. A.T. Dideikin, A.Y. Vul, Graphene oxide and derivatives: the place in graphene family, Front. Phys., 6 (2019) 149, doi: 10.3389/fphy.2018.00149.
  2. A.K. Geim, K.S. Novoselov, The Rise of Graphene, Nanoscience and Technology: A Collection of Reviews From Nature Journals, World Scientific Publishing, Singapore, 2010, pp. 11–19.
  3. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications, Small, 7 (2011) 1876–1902.
  4. A. Soltani, M. Faramarzi, S.A.M. Parsa, A review on adsorbent parameters for removal of dye products from industrial wastewater, Water Qual. Res. J., 56 (2021) 181–193.
  5. D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol., 16 (2019) 1193–1226.
  6. S. Rafaqat, N. Ali, C. Torres, B. Rittmann, Recent progress in the treatment of dyes wastewater using microbial-electro-Fenton technology, RSC Adv., 12 (2022) 17104–17137.
  7. K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo colorants: influence of solubility and bioavailability, Toxicol. Lett., 151 (2004) 203–210.
  8. S. Kobylewski, M.F. Jacobson, Toxicology of food dyes, Int. J. Occup. Environ. Health, 18 (2012) 220–246.
  9. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innovation, 3 (2019) 275–290.
  10. M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El-Bachiri, A. El-Harfi, Textile finishing dyes and their impact on aquatic environs, Heliyon, 5 (2019) e02711, doi: 10.1016/j.heliyon.2019.e02711.
  11. C. Aroraa, P. Kumara, S. Sonia, J. Mittal, A. Mittal, B. Singh, Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon, Desal. Water Treat., 195 (2020) 341–352.
  12. A. Mittal, Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers, J. Hazard. Mater., 133 (2006) 196–202.
  13. A. Mittal, L. Krishnan, V.K. Gupta, Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya, Sep. Purif. Technol., 43 (2005) 125–133.
  14. K. Piaskowski, R. Świderska-Dąbrowska, P.K. Zarzycki, Dye removal from water and wastewater using various physical, chemical, and biological processes, J. AOAC Int., 101 (2018) 1371–1384.
  15. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  16. S.S. Muthu, A. Khadir, Advanced Removal Techniques for Dye-containing Wastewaters, S.S. Muthu, A. Khadir, Eds., Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, Chemistry and Materials Science, Chemistry and Material Science (R0), Springer, Singapore, 2021, pp. 1–283.
  17. F. Mashkoor, A. Nasar, Inamuddin, Carbon nanotube-based adsorbents for the removal of dyes from waters: a review, Environ. Chem. Lett., 18 (2020) 605–629.
  18. T.A. Aragaw, F.M. Bogale, Biomass-based adsorbents for removal of dyes from wastewater: a review, Front. Environ. Sci., 9 (2021) 764958, doi: 10.3389/fenvs.2021.764958.
  19. V.K. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash, Sep. Purif. Technol., 40 (2004) 87–96.
  20. J. Mittal, Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review, J. Environ. Manage., 295 (2021) 113017, doi: 10.1016/j.jenvman.2021.113017.
  21. I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev, V. Grachev, Graphene based adsorbents for remediation of noxious pollutants from wastewater, Environ. Int., 27 (2019) 160–180.
  22. G.K. Ramesh, A. Vijaya Kumar, H.B. Muralidhar, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interface Sci., 361 (2011) 270–277.
  23. H. Hu, W. Wen, J.Z. Ou, Construction of adsorbents with graphene and its derivatives for wastewater treatment: a review, Environ. Sci. Nano, 9 (2022) 3226–3276.
  24. R. Allgayer, N. Yousefi, N. Tufenkji, Graphene oxide sponge as adsorbent for organic contaminants: comparison with granular activated carbon and influence of water chemistry, Environ. Sci. Nano, 7 (2020) 2669–2680.
  25. A. Annisa, R. Mutiara, C.G. Afrilia, A. Bahtiar, S. Suryaningsih, L. Safriani, Preliminary study of ZnO/GO composite preparation as photocatalyst material for degradation methylene blue under low UV-light irradiation, Mater. Sci. Forum, 1028 (2021) 319–325.
  26. S.A. Hosseini, S. Mashaykhi, S. Babaei, Graphene oxide/zinc oxide nanocomposite: a superior adsorbent for removal of methylene blue-statistical analysis by response surface methodology (RSM), S. Afr. J. Chem., 69 (2016) 105–112.
  27. P. Banerjee, A. Mukhopadhayay, P. Das, Ultrasound enhanced azo dye adsorption by graphene oxide nanocomposite, Madridge J. Nanotechnol. Nanosci., 3 (2018) 106–111.
  28. G. Qu, G. Fan, M. Zhou, X. Rong, T. Li, R. Zhang, J. Sun, D. Chen, Graphene-modified ZnO nanostructures for low-temperature NO2 sensing, ACS Omega, 4 (2019) 4221−4232.
  29. O. Moradi, A. Pudineh, S. Sedaghat, Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents, Food Chem. Toxicol., 169 (2022) 113412, doi: 10.1016/j.fct.2022.113412.
  30. G. Kiani, M. Dostali, A. Rostami, A.R. Khataee, Adsorption studies on the removal of malachite green from aqueous solutions onto halloysite nanotubes, Appl. Clay Sci., 54 (2011) 34–39.
  31. V.M. Muinde, J.M. Onyari, B. Wamalwa, J.N. Wabomba, Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material, Environ. Chem. Ecotoxicol., 2 (2020) 115–125.
  32. A. Ahmad, D. Lokhat, M. Rafatullah, A. Khatoon, S.H.M. Setapar, Aloe vera biomass containing cellulosic moieties used as sustainable adsorbents for the removal of crystal violet dye from aqueous solution, Desal. Water Treat., 170 (2019) 337–348.
  33. S. Arivoli, M. Hema, P. Prasath, M. Deva, Adsorption of malachite green onto carbon prepared from borassus bar, Arabian J. Sci. Eng., 34 (2009) 31–42.
  34. F. Guo, X. Jiang, X. Li, X. Jia, S. Liang, L. Qian, Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green, Mater. Chem. Phys., 240 (2020) 122240, doi: 10.1016/j.matchemphys.2019.122240.
  35. E.E. Özbaş, B. Balçık, H.K. Ozcan, Preparation of activated carbon from waste tires, and its use for dye removal, Desal. Water Treat., 172 (2019) 78–85.
  36. K. Suwannahong, S. Wongcharee, T. Kreetachart, C. Sirilamduan, J. Rioyo, A. Wongphat, Evaluation of the Microsoft Excel Solver spreadsheet-based program for non-linear expressions of adsorption isotherm models onto magnetic nanosorbent, Appl. Sci., 11 (2021) 7432, doi: 10.3390/app11167432.
  37. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.
  38. M.I. El-Khaiary, G.F. Malash, Common data analysis errors in batch adsorption studies, Hydrometallurgy, 105 (2011) 314–320.
  39. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  40. J. Mittal, R. Ahmad, A. Mittal, Kahwa tea (Camellia sinensis) carbon — a novel and green low-cost adsorbent for the sequestration of Titan yellow dye from its aqueous solutions, Desal. Water Treat., 227 (2021) 404–411.
  41. A. Patel, S. Soni, J. Mittal, A. Mittal, C. Arora, Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome, Desal. Water Treat., 220 (2021) 342–352.
  42. J. Mittal, R. Ahmad, A. Mariyam, V.K. Gupta, A. Mittal, Expeditious and enhanced sequestration of heavy metal ions from aqueous environment by papaya peel carbon: a green and low-cost adsorbent, Desal. Water Treat., 210 (2021) 365–376.
  43. J. López-Luna, L.E. Ramírez-Montes, S. Martinez-Vargas, A.I. Martínez, O.F. Mijangos-Ricardez,
    M. del C.A. González-Chávez, R. Carrillo-González, F.A. Solís-Domínguez, M. del C. Cuevas-Díaz,
    V. Vázquez-Hipólito, Linear and non-linear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles, SN Appl. Sci., 1 (2019) 950, doi: 10.1007/s42452-019-0977-3.
  44. R. Ahmad, I. Hasan, A. Mittal, Adsorption of Cr(VI) and Cd(II) on chitosan grafted polyaniline-OMMT nanocomposite: isotherms, kinetics and thermodynamics studies, Desal. Water Treat., 58 (2017) 144–153.
  45. S. Soni, P.K. Bajpai, D. Bharti, J. Mittal, C. Arora, Removal of crystal violet from aqueous solution using iron-based metal organic framework, Desal. Water Treat., 205 (2020) 386–399.
  46. G. Kiani, M. Dostali, A. Rostami, A.R. Khataee, Adsorption studies on the removal of malachite green from aqueous solutions onto halloysite nanotubes, Appl. Clay Sci., 54 (2011) 34–39.
  47. A. Ahmad, S.H.M. Setapar, A.A. Yaqoob, M.N.M. Ibrahim, Synthesis and characterization of GO-Ag nanocomposite for removal of malachite dye from aqueous solution, Mater. Today Proc., 47 (2021) 1359–1365.