References

  1. R.W. Flint, The Sustainable Development of Water Resources, Universities Council on Water Resources, Water Resources Update, Issue 127, 2004, pp. 41–51.
  2. A.M. Omer, Energy, environment and sustainable development, Renewable Sustainable Energy Rev., 12 (2008) 2265–2300.
  3. Smart Water Magazine, May 27 (2022), Retrieved August 25, 2022.
  4. IAEA, Introduction of Nuclear Desalination, Technical Reports Series No. 400, International Atomic Energy Agency, Vienna, December 2000. Available at https://pub.iaea.org/MTCD/publications/PDF/TRS400_scr.pdf
  5. F. Gralla, D.J. Abson, A.P. Moller, D.J. Lang, H.V. Wehrden, Energy transitions and national development indicators: a global review of nuclear energy production, Renewable Sustainable Energy Rev., 70 (2017) 1251–1265.
  6. M.M. Megahed, Nuclear desalination: history and prospects, Desalination, 135 (2001) 169–185.
  7. R.S. Faibish, T. Konishi, M. Gasparini, Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants, 10th International Conference on Nuclear Engineering, Arlington, Virginia, USA, 2002, pp. 15–22.
  8. I. Khamis, Overview of Nuclear Desalination Technologies & Costs, Department Nuclear Energy, Division Nuclear Power, July 2018. https://www.oecdnea.org/ndd/workshops/nucogen/ presentations/8_Khamis_Overviewnuclear-desalination.pdf
  9. IAEA, Desalination of Water Using Conventional and Nuclear Energy, Technical Reports Series No. 24, International Atomic Energy Agency, Vienna, 1964.
  10. IAEA, Guide to the Costing of Water from Nuclear Desalination Plants, Technical Report Series No. 80, International Atomic Energy Agency, Vienna, 1967.
  11. IAEA-TECDOC-940, Floating Nuclear Energy Plants for Seawater Desalination, International Atomic Energy Agency, Vienna, May 1995. Available at https://pub.iaea.org/MTCD/publications/PDF/te_0940_scr.pdf
  12. IAEA-TECDOC-1584, Advanced Applications of Water Cooled Nuclear Power Plants, International Atomic Energy Agency, Vienna, July 2007. Available at https://pub.iaea.org/MTCD/ Publications/PDF/te_1584_web.pdf
  13. IAEA-TECDOC-1235, Safety Aspects of Nuclear Plants Coupled With Seawater Desalination Units, International Atomic Energy Agency, Vienna, August 2001. Available at
    https://pub.iaea.org/MTCD/publications/PDF/te_1235_prn.pdf
  14. IAEA-TECDOC-1561, Economics of Nuclear Desalination: New Developments and Site Specific Studies, International Atomic Energy Agency, Vienna, July 2007. Available at
    http://pub.iaea. org/MTCD/publications/PDF/te_1561_web.pdf
  15. IAEA-TECDOC-666, Technical and Economic Evaluation of Potable Water Production Through Desalination of Seawater by Using Nuclear Energy and Other Means, International Atomic Energy Agency, Vienna, September 1992. Available at http://iaea.org/inis/collection/NCL Collection Store/_ Public/24/007/24007848.pdf
  16. Z. Dong, M. Liu, X. Huang, Y. Zhang, Z. Zhang, Y. Dong, Dynamical modeling and simulation analysis of a nuclear desalination plant based on the MED-TVC process, Desalination, 456 (2019) 121–135.
  17. H.S. Kim, H.C. No, Y.G. Jo, A.F. Wibisono, B.H. Park, J. Choi, J.I. Lee, Y.H. Jeong, N.Z. Cho, Feasibility study of a dedicated nuclear desalination system: low-pressure Inherent heat sink nuclear desalination plant (LIND), Nucl. Eng. Technol., 47 (2015) 293–305.
  18. I. Khamis, R.S. El-Emam, IAEA coordinated research activity on nuclear desalination: the quest for new technologies and techno-economic assessment, Desalination, 394 (2016) 56–63.
  19. C. Tai, G. Tian, W. Lei, A water-heat combined supply system based on waste heat from a coastal nuclear power plant in northern China, Appl. Therm. Eng., 200 (2022) 117684, doi: 10.1016/j.applthermaleng.2021.117684.
  20. I.L. Pioro, R.B. Duffey, P.L. Kirillov, R. Panchal, 1 – Introduction: A Survey of the Status of Electricity Generation in the World, I.L. Pioro, Ed., Handbook of Generation IV Nuclear Reactors, Woodhead Publishing Series in Energy, Woodhead Publishing is an Imprint of Elsevier, The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, UK, 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA, 2016, pp. 1–34. Available at https://doi.org/10.1016/B978-0-08-100149-3.00001-X
  21. I. Khamis, A global overview on nuclear desalination, Int. J. Nucl. Desalin., 3 (2009) 311–328.
  22. S. Nisan, S. Dardour, Economic evaluation of nuclear desalination systems, Desalination, 205 (2007) 231–242.
  23. A. Al-Othman, N.N. Darwish, M. Qasim, M. Tawalbeh, N.A. Darwish, N. Hilal, Nuclear desalination: a state-of-the-art review, Desalination, 457 (2019) 39–61.
  24. S.U. Khan, S.U. Khan, S. Haider, A. El-Leathy, U.A. Rana, S.N. Danish, R. Ullah, Development and
    techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region, Desalination, 406 (2017) 51–59.
  25. Y.H. Jung, Y.H. Jeong, J. Choi, A.F. Wibisono, J.I. Lee, H.C. No, Feasibility study of a small-sized nuclear heat-only plant dedicated to desalination in the UAE, Desalination, 337 (2014) 83–97.
  26. D.T. Ingersoll, Z.J. Houghton, R. Bromm, C. Desportes, NuScale small modular reactor for co-generation of electricity and water, Desalination, 340 (2014) 84–93.
  27. S. Hills, S. Dana, H. Wang, Dynamic modeling and simulation of nuclear hybrid energy systems using freeze desalination and reverse osmosis for clean water production, Energy Convers. Manage., 247 (2021) 114724, doi: 10.1016/j. enconman.2021.114724.
  28. M.A. Jamil, M.W. Shahzad, S.M. Zubair, A comprehensive framework for thermoeconomic analysis of desalination systems, Energy Convers. Manage., 222 (2020) 113188, doi: 10.1016/j.enconman.2020.113188.
  29. G. Locatelli, A. Fiordaliso, S. Boarin, M.E. Ricotti, Cogeneration: an option to facilitate load following in small modular reactors, Prog. Nucl. Energy, 97 (2017) 153–161.
  30. K. Sadeghi, S.H. Ghazaie, D.E. Sokolova, E. Fedorovich, A. Shirani, Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems, Desalination, 493 (2020) 114623, doi: 10.1016/j.desal.2020.114623.
  31. J.M. Schmidt, V.G. Gude, Nuclear cogeneration for cleaner desalination and power generation – a feasibility study, Cleaner Eng. Technol., 2 (2021) 100044, doi: 10.1016/j.clet.2021.100044.
  32. N.Y. Mansouri, A.F. Ghoniem, Does nuclear desalination make sense for Saudi Arabia?, Desalination, 406 (2017) 37–43.
  33. A. Rezaei, A. Naserbeagi, Gh. Alahyarizadeh, M. Aghaie, Economic evaluation of Qeshm island MED-desalination plant coupling with different energy sources including fossils and nuclear power plants, Desalination, 442 (2017) 101–112.
  34. S.U. Khan, S.U. Khan, Karachi nuclear power plant (KANUPP): as case study for techno-economic assessment of nuclear power coupled with water desalination, Energy, 127(2017) 372–380.
  35. K.C. Kavvadias, I. Khamis, Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel, Energy Policy, 74 (2014) S24–S30.
  36. International Atomic Energy Agency, DEEP User’s Manual Version 3, 2006.
  37. International Atomic Energy Agency, DEEP User’s Manual Version 5.1, 2013.
  38. I. Khamis, H. Jouhara, V. Anastasov, Heat pipes as an extra measure to eliminate radioactive contamination in nuclear seawater desalination, Desal. Water Treat., 13 (2010) 82–87.
  39. H.J. Mosleh, S.J. Mamouri, M.B. Shafii, A.H. Sima, A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector, Energy Convers. Manage., 99 (2015) 141–150.
  40. H. Jouhara, Economic assessment of the benefits of wraparound heat pipes in ventilation processes for hot and humid climates, Int. J. Low-Carbon Technol., 4 (2009) 52–60.
  41. H. Jouhara, V. Anastasov, I. Khamis, Potential of heat pipe technology in nuclear seawater desalination, Desalination, 249 (2009) 1055–1061.
  42. M.V. Ramana, L.B. Hopkins, A. Glaser, Licensing small modular reactors, Energy, 61 (2013) 555–564.
  43. J. Vujić, R.M. Bergmann, R. Škoda, M. Miletić, Small modular reactors: simpler, safer, cheaper?, Energy, 45 (2012) 288–295.
  44. M.K. Rowinski, T.J. White, J. Zhao, Small and medium sized reactors (SMR) are view of technology, Renewable Sustainable Energy Rev., 44 (2015) 643–656.
  45. IAEA, Status of Small and Medium Sized Reactor Designs, International Atomic Energy Agency, Vienna, 2012.
  46. M.D. Carelli, L.E. Conway, L. Oriani, B. Petrović, C.V. Lombardi, M.E. Ricotti, A.C.O. Barroso, J.M. Collado, L. Cinotti, N.E. Todreas, D. Grgić, M.M. Moraes, R.D. Boroughs, H. Ninokata, D.T. Ingersoll, F. Oriolo, The design and safety features of the IRIS reactor, Nucl. Eng. Des., 230 (2004) 151–167.
  47. D.T. Ingersoll, Deliberately small reactors and the second nuclear era, Prog. Nucl. Energy, 51 (2009) 589–603.
  48. E. Priego, G. Alonso, E. del Valle, R. Ramirez, Alternatives of steam extraction for desalination purposes using SMART reactor, Desalination, 413 (2017) 199–216.