References

  1. X. Liu, Z. Wang, X.-L. Wang, L. Zhen, C. Yang, E.-H. Li, H.-M. Wei, Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments, Huan Jing Ke Xue, 40 (2019) 2094–2100.
  2. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  3. D. Panda, V.K. Saharan, S. Manickam, Controlled hydrodynamic cavitation: a review of recent advances and perspectives for greener processing, Processes, 8 (2020) 220, doi: 10.3390/pr8020220.
  4. G. Mancuso, M. Langone, G. Andreottola, A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications, J. Environ. Health Sci. Eng., 18 (2020) 311–333.
  5. K.O. Badmus, J.O. Tijani, E. Massima, L. Petrik, Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process, Environ. Sci. Pollut. Res., 25 (2018) 7299–7314.
  6. S. Raut-Jadhav, D. Saini, S. Sonawane, A. Pandit, Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution, Ultrason. Sonochem., 28 (2016) 283–293.
  7. V. Innocenzi, M. Prisciandaro, M. Centofanti, F. Vegliò, Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes, J. Environ. Chem. Eng., 7 (2019) 103171, doi: 10.1016/j.jece.2019.103171.
  8. G. Li, L. Yi, J. Wang, Y. Song, Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: mechanisms, geometric and operation parameters, Ultrason. Sonochem., 60 (2020) 104806, doi: 10.1016/j.ultsonch.2019.104806.
  9. G.L. Chahine, K.M. Kalumuck, Swirling Fluid Jet Cavitation Method and System for Efficient Decontamination of Liquids, PCT/SE2009/050515, 2001.
  10. H.T. Curt, O.M. Morten, Vortex Generator with Vortex Chamber, PCT/SE2009/050515, 2012.
  11. J. Wang, X. Wang, P. Guo, J. Yu, Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2, Ultrason. Sonochem., 18 (2011) 494–500.
  12. X. Wang, J. Wang, P. Guo, W. Guo, G. Li, Chemical effect of swirling jet-induced cavitation: degradation of rhodamine B in aqueous solution, Ultrason. Sonochem., 15 (2008) 357–363.
  13. P. Braeutigam, Z.L. Wu, A. Stark, B. Ondruschka, Degradation of BTEX in aqueous solution by hydrodynamic cavitation, Chem. Eng. Technol., 32 (2009) 745–753.
  14. B. Wang, R. Zhang, X. Lian, A Swirling Vortex Cavitator, CN 209442699U, 2019.
  15. K. Soni, K. Jyoti, H. Chandra, R. Chandra, Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy, Bioresour. Technol. Rep., 19 (2022) 101080, doi: 10.1016/j. biteb.2022.101080.
  16. K.M. Wang, L.X. Zhou, K.F. Ji, S.N. Xu, J.D. Wang, Evaluation of a modified internal circulation (MIC) anaerobic reactor for real antibiotic pharmaceutical wastewater treatment: process performance, microbial community and antibiotic resistance genes evolutions, J. Water Process Eng., 48 (2022) 102914, doi: 10.1016/j.jwpe.2022.102914.
  17. X. Zhang, H. Yang, Z. Li, Relationship between strength of hydrodynamic cavitation and amount of induced hydroxyl radical, J. Chem. Ind. Eng., 58 (2007) 27–32.
  18. L. Villeneuve, L. Alberti, J.P. Steghens, J.M. Lancelin, J.L. Mestas, Assay of hydroxyl radicals generated by focused ultrasound, Ultrason. Sonochem., 16 (2009) 339–344.
  19. X. Wang, J. Jia, Y. Wang, Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Chem. Eng. J., 315 (2017) 274–282.
  20. Y.Y. Chen, Y.L. Ma, J. Yang, L.Q. Wang, J.M. Lv, C.J. Ren, Aqueous oxytetracycline degradation by H2O2 alone: removal and transformation pathway, Chem. Eng. J., 307 (2017) 15–23.
  21. S. Yang, Y. Feng, D. Gao, X. Wang, N. Suo, Y. Yu, S. Zhang, Electrocatalysis degradation of oxytetracycline in a threedimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings particle electrode (FPE): physicochemical properties, influencing factors and the degradation mechanism, J. Hazard. Mater., 407 (2021) 124361, doi: 10.1016/j.jhazmat.2020.124361.
  22. E. Evgenidou, Z. Chatzisalata, A. Tsevis, K. Bourikas, P. Torounidou, D. Sergelidis, A. Koltsakidou, D.A. Lambropoulou, Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: kinetics, mineralization, antimicrobial activity elimination and disinfection, J. Environ. Chem. Eng., 9 (2021) 105295, doi: 10.1016/j.jece.2021.105295.
  23. N. Barhoumi, H. Olvera-Vargas, N. Oturan, D. Huguenot, A. Gadri, S. Ammar, E. Brillas, M.A. Oturan, Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro- Fenton process with solid catalyst chalcopyrite, Appl. Catal., B, 209 (2017) 637–647.
  24. R. Delépée, D. Maumeb, B.L. Bizecb, H. Pouliquena, Preliminary assays to elucidate the structure of oxytetracycline’s degradation products in sediments. Determination of natural tetracyclines by high-performance liquid chromatographyfast atom bombardment mass spectrometry, J. Chromatogr. B, 748 (2000) 369–381.
  25. S. Zhang, S. Zhao, S. Huang, B. Hu, M. Wang, Z. Zhang, L. He, M. Du, Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/sulfur-codoped mesoporous carbon, Chem. Eng. J., 420 (2021) 130516, doi: 10.1016/j.cej.2021.130516.
  26. Y. Yang, G. Zeng, D. Huang, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang, W. Xiong, X. Li, B. Li, W. Dong, Y. Zhou, Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production, Appl. Catal., B, 272 (2020) 118970, doi: 10.1016/j.apcatb.2020.118970.
  27. M. Minale, A. Guadie, Y. Li, Y. Meng, X. Wang, J. Zhao, Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: adsorption behavior and oxidative degradation pathways, Chemosphere, 280 (2021) 130926, doi: 10.1016/j.chemosphere.2021.130926.
  28. W. Lai, G. Xie, R. Dai, C. Kuang, Y. Xu, Z. Pan, L. Zheng, L. Yu, S. Ye, Z. Chen, H. Li, Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode, J. Environ. Manage., 257 (2020) 109968, doi: 10.1016/j.jenvman.2019.109968.
  29. J. Ni, D. Liu, W. Wang, A. Wang, J. Jia, J. Tian, Z. Xing, Hierarchical defect-rich flower-like BiOBr/Ag nanoparticles/ultrathin g-C3N4 with transfer channels plasmonic Z-scheme heterojunction photocatalyst for accelerated visible-light-driven photothermal-photocatalytic oxytetracycline degradation, Chem. Eng. J., 419 (2021) 129969, doi: 10.1016/j.cej.2021.129969.