References
- H. Abghari, H. Ahmadi, S. Besharat, V. Rezaverdinejad,
Prediction of daily pan evaporation using wavelet neural
networks, Water Resour. Manage., 26 (2012) 3639–3652.
- O. Kisi, Pan evaporation modeling using least square support
vector machine, multivariate adaptive regression splines
and M5 model tree, J. Hydrol., 528 (2015) 312–320.
- H.A.K.A. Khayyat, A.J.M. Sharif, M. Crespi, Assessing the
Impacts of Climate Change on Natural Resources in Erbil
Area, the Iraqi Kurdistan Using Geo-Information and Landsat
Data, A. Al-Quraishi, A. Negm, Eds., Environmental Remote
Sensing and GIS in Iraq, Springer Water, Springer, Cham.
doi: 10.1007/978-3-030-21344-2_19
- J. Piri, S. Amin, A. Moghaddamnia, A. Keshavarz, D. Han,
R. Remesan, Daily pan evaporation modeling in a hot and dry
climate, J. Hydrol. Eng., 14 (2009) 803–811.
- L. Wang, Z. Niu, O. Kisi, C.A. Li, D. Yu, Pan evaporation
modeling using four different heuristic approaches,
Comput. Electron. Agric., 140 (2017) 203–213.
- M. Abed, M.A. Imteaz, A.N. Ahmed, Y.F. Huang, Application
of long short-term memory neural network technique for
predicting monthly pan evaporation, Sci. Rep., 11 (2021) 20742,
doi: 10.1038/s41598-021-99999-y.
- M. Abed, M.A. Imteaz, A.N. Ahmed, Y.F. Huang, A novel
application of transformer neural network (TNN) for
estimating pan evaporation rate, Appl. Water Sci., 13 (2023) 31,
doi: 10.1007/s13201-022-01834-w.
- S. Kim, J. Shiri, V.P. Singh, O. Kisi, G. Landeras, Predicting
daily pan evaporation by soft computing models with limited
climatic data, Hydrol. Sci. J., 60 (2015) 1120–1136.
- L. Wang, O. Kisi, M. Zounemat-Kermani, H. Li, Pan evaporation
modeling using six different heuristic computing
methods in different climates of China, J. Hydrol., 544 (2017)
407–427.
- V. Nourani, M.S. Fard, Sensitivity analysis of the artificial neural
network outputs in simulation of the evaporation process at
different climatologic regimes, Adv. Eng. Software, 47 (2012)
127–146.
- A. Rahimikhoob, Estimating daily pan evaporation using
artificial neural network in a semi-arid environment,
Theor. Appl. Climatol., 98 (2009) 101–105.
- P.B. Shirsath, A.K. Singh, A comparative study of daily pan
evaporation estimation using ANN, regression and climate
based models, Water Resour. Manage., 24 (2010) 1571–1581.
- S.N. Qasem, S. Samadianfard, S. Kheshtgar, S. Jarhan,
O. Kisi, S. Shamshirband, K.W. Chau, Modeling monthly pan
evaporation using wavelet support vector regression and
wavelet artificial neural networks in arid and humid climates,
Eng. Appl. Comput. Fluid Mech., 13 (2019) 177–187.
- J.-L. Chen, H. Yang, M.-Q. Lv, Z.-L. Xiao, S.J. Wu, Estimation
of monthly pan evaporation using support vector machine in
Three Gorges Reservoir Area, China, Theor. Appl. Climatol.,
138 (2019) 1095–1107.
- W.G. Zhang, H.R. Li, C.Z. Wu, Y.Q. Li, Z.Q. Liu, H.L. Liu,
Soft computing approach for prediction of surface settlement
induced by earth pressure balance shield tunneling,
Underground Space, 4 (2021) 353–363.
- J. Estévez, P. Gavilán, J.V. Giráldez, Guidelines on validation
procedures for meteorological data from automatic weather
stations, J. Hydrol., 402 (2011) 144–154.
- J. Bates, C.W.J. Granger, The combination of forecasts, J. Oper.
Res. Soc., 20 (1969) 451–468.
- S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon,
R. Lewandowski, R. Winkler, The accuracy of extrapolation
(time series) methods: results of a forecasting competition,
Int. J. Forecast., 1 (1982) 111–153.
- N.R. Kiran, V. Ravi, Software reliability prediction by soft
computing techniques, J. Syst. Software, 81 (2008) 576–583.
- E. Sharghi, V. Nourani, N. Behfar, Earthfill dam seepage
analysis using ensemble artificial intelligence-based modeling,
J. Hydroinf., 20 (2018) 1071–1084.
- V. Nourani, G. Elkiran, J. Abdullahi, Multi-station artificial
intelligence-based ensemble modeling of reference evapotranspiration
using pan evaporation measurements, J. Hydrol.,
577 (2019) 123958, doi: 10.1016/j.jhydrol.2019.123958.
- V. Nourani, G. Elkiran, J. Abdullahi, A. Tahsin, Multi-region
modeling of daily global solar radiation with artificial
intelligence ensemble, Nat. Resour. Res., 28 (2019) 1217–1238.
- V. Nourani, G. Elkiran, J. Abdullahi, Multi-step ahead modeling
of reference evapotranspiration using a multi-model
approach. J. Hydrol., 581 (2020) 124434, doi: 10.1016/j.jhydrol.
2019.124434.
- A. Rasul, H. Balzter, C. Smith, Spatial variation of the daytime
Surface Urban Cool Island during the dry season in Erbil, Iraqi
Kurdistan, from Landsat 8, Urban Clim., 14 (2015) 176–186.
- N. Şarlak, O.M.M. Agha, Spatial and temporal variations of
aridity indices in Iraq, Theor. Appl. Climatol., 133 (2018) 89–99.
- G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial
intelligence-based approaches for multi-station modelling
of dissolve oxygen in river, Global J. Environ. Sci. Manage.,
4 (2018) 439–450.
- D.R. Legates, G.J. McCabe Jr., Evaluating the use of “goodnessof‐
fit” measures in hydrologic and hydroclimatic model
validation, Water Resour. Res., 35 (1999) 233–241.
- J. Estévez, A.P. García-Marín, J.A. Morábito, M. Cavagnaro,
Quality assurance procedures for validating meteorological
input variables of reference evapotranspiration in mendoza
province (Argentina), Agric. Water Manage., 172 (2016) 96–109.
- M.A. Shafer, C.A. Fiebrich, D.S. Arndt, S.E. Fredrickson,
T.W. Hughes, Quality assurance procedures in the Oklahoma
Mesonetwork, J. Atmos. Oceanic Technol., 17 (2000) 474–494.
- S. Feng, Q. Hu, W. Qian, Quality control of daily meteorological
data in China, 1951–2000: a new dataset, Int. J. Climatol.:
J.R. Meteorolog. Soc., 24 (2004) 853–870.
- V. Nourani, M.T. Alami, M.H. Aminfar, A combined neuralwavelet
model for prediction of Ligvanchai watershed
precipitation, Eng. Appl. Artif. Intell., 22 (2009) 466–472.
- J. Abdullahi, G. Elkiran, Prediction of the future impact of
climate change on reference evapotranspiration in Cyprus
using artificial neural network, Procedia Comput. Sci.,
120 (2017) 276–283.
- J. Abdullahi, G. Elkiran, V. Nourani, Application of Artificial
Neural Network to Predict Reference Evaporation in Famagusta,
North Cyprus, 11th International Scientific Conference on
Production Engineering Development and Modernization of
Production, Bihac, Bosnia, 2017, pp. 549–554.
- K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward
networks are universal approximators, Neural Networks,
2 (1989) 359–366.
- J.A. Suykens, J. Vandewalle, Least squares support vector
machine classifiers, Neural Process. Lett., 9 (1999) 293–300.
- S.G. Cao, Y.B. Liu, Y.P. Wang, A forecasting and forewarning
model for methane hazard in working face of coal mine based
on LS-SVM, J. China Univ. Min. Technol., 18 (2008) 172–176.
- R. Fletcher, Practical Methods of Optimization, John Wiley
and Sons, New York, 1987.
- M.K. Goyal, B. Bharti, J. Quilty, J. Adamowski, A. Pandey,
Modeling of daily pan evaporation in sub-tropical climates
using ANN, LS-SVR, Fuzzy Logic, and ANFIS, Expert Syst.
Appl., 41 (2014) 5267–5276.
- J.M. Bruton, R.W. McClendon, G. Hoogenboom, Estimating
daily pan evaporation with artificial neural networks,
Trans. ASAE, 43 (2000) 491–496.
- B. Simon-Gáspár, G. Soós, A. Anda, Pan evaporation is
increased by submerged macrophytes, Hydrol. Earth Syst. Sci.,
26 (2022) 4741–4756.
- L. Wang, O. Kisi, B. Hu, M. Bilal, M. Zounemat-Kermani,
H. Li, Evaporation modelling using different machine
learning techniques, Int. J. Climatol., 37 (2017c) 1076–1092.
- N.M. UNEP, D. Thomas, World Atlas of Desertification,
Edward Arnold, London, 1992.