References

  1. H. Abghari, H. Ahmadi, S. Besharat, V. Rezaverdinejad, Prediction of daily pan evaporation using wavelet neural networks, Water Resour. Manage., 26 (2012) 3639–3652.
  2. O. Kisi, Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree, J. Hydrol., 528 (2015) 312–320.
  3. H.A.K.A. Khayyat, A.J.M. Sharif, M. Crespi, Assessing the Impacts of Climate Change on Natural Resources in Erbil Area, the Iraqi Kurdistan Using Geo-Information and Landsat Data, A. Al-Quraishi, A. Negm, Eds., Environmental Remote Sensing and GIS in Iraq, Springer Water, Springer, Cham.
    doi: 10.1007/978-3-030-21344-2_19
  4. J. Piri, S. Amin, A. Moghaddamnia, A. Keshavarz, D. Han, R. Remesan, Daily pan evaporation modeling in a hot and dry climate, J. Hydrol. Eng., 14 (2009) 803–811.
  5. L. Wang, Z. Niu, O. Kisi, C.A. Li, D. Yu, Pan evaporation modeling using four different heuristic approaches, Comput. Electron. Agric., 140 (2017) 203–213.
  6. M. Abed, M.A. Imteaz, A.N. Ahmed, Y.F. Huang, Application of long short-term memory neural network technique for predicting monthly pan evaporation, Sci. Rep., 11 (2021) 20742,
    doi: 10.1038/s41598-021-99999-y.
  7. M. Abed, M.A. Imteaz, A.N. Ahmed, Y.F. Huang, A novel application of transformer neural network (TNN) for estimating pan evaporation rate, Appl. Water Sci., 13 (2023) 31, doi: 10.1007/s13201-022-01834-w.
  8. S. Kim, J. Shiri, V.P. Singh, O. Kisi, G. Landeras, Predicting daily pan evaporation by soft computing models with limited climatic data, Hydrol. Sci. J., 60 (2015) 1120–1136.
  9. L. Wang, O. Kisi, M. Zounemat-Kermani, H. Li, Pan evaporation modeling using six different heuristic computing methods in different climates of China, J. Hydrol., 544 (2017) 407–427.
  10. V. Nourani, M.S. Fard, Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes, Adv. Eng. Software, 47 (2012) 127–146.
  11. A. Rahimikhoob, Estimating daily pan evaporation using artificial neural network in a semi-arid environment, Theor. Appl. Climatol., 98 (2009) 101–105.
  12. P.B. Shirsath, A.K. Singh, A comparative study of daily pan evaporation estimation using ANN, regression and climate based models, Water Resour. Manage., 24 (2010) 1571–1581.
  13. S.N. Qasem, S. Samadianfard, S. Kheshtgar, S. Jarhan, O. Kisi, S. Shamshirband, K.W. Chau, Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates, Eng. Appl. Comput. Fluid Mech., 13 (2019) 177–187.
  14. J.-L. Chen, H. Yang, M.-Q. Lv, Z.-L. Xiao, S.J. Wu, Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China, Theor. Appl. Climatol., 138 (2019) 1095–1107.
  15. W.G. Zhang, H.R. Li, C.Z. Wu, Y.Q. Li, Z.Q. Liu, H.L. Liu, Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling, Underground Space, 4 (2021) 353–363.
  16. J. Estévez, P. Gavilán, J.V. Giráldez, Guidelines on validation procedures for meteorological data from automatic weather stations, J. Hydrol., 402 (2011) 144–154.
  17. J. Bates, C.W.J. Granger, The combination of forecasts, J. Oper. Res. Soc., 20 (1969) 451–468.
  18. S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, R. Winkler, The accuracy of extrapolation (time series) methods: results of a forecasting competition, Int. J. Forecast., 1 (1982) 111–153.
  19. N.R. Kiran, V. Ravi, Software reliability prediction by soft computing techniques, J. Syst. Software, 81 (2008) 576–583.
  20. E. Sharghi, V. Nourani, N. Behfar, Earthfill dam seepage analysis using ensemble artificial intelligence-based modeling, J. Hydroinf., 20 (2018) 1071–1084.
  21. V. Nourani, G. Elkiran, J. Abdullahi, Multi-station artificial intelligence-based ensemble modeling of reference evapotranspiration using pan evaporation measurements, J. Hydrol., 577 (2019) 123958, doi: 10.1016/j.jhydrol.2019.123958.
  22. V. Nourani, G. Elkiran, J. Abdullahi, A. Tahsin, Multi-region modeling of daily global solar radiation with artificial intelligence ensemble, Nat. Resour. Res., 28 (2019) 1217–1238.
  23. V. Nourani, G. Elkiran, J. Abdullahi, Multi-step ahead modeling of reference evapotranspiration using a multi-model approach. J. Hydrol., 581 (2020) 124434, doi: 10.1016/j.jhydrol. 2019.124434.
  24. A. Rasul, H. Balzter, C. Smith, Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8, Urban Clim., 14 (2015) 176–186.
  25. N. Şarlak, O.M.M. Agha, Spatial and temporal variations of aridity indices in Iraq, Theor. Appl. Climatol., 133 (2018) 89–99.
  26. G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river, Global J. Environ. Sci. Manage., 4 (2018) 439–450.
  27. D.R. Legates, G.J. McCabe Jr., Evaluating the use of “goodnessof‐ fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35 (1999) 233–241.
  28. J. Estévez, A.P. García-Marín, J.A. Morábito, M. Cavagnaro, Quality assurance procedures for validating meteorological input variables of reference evapotranspiration in mendoza province (Argentina), Agric. Water Manage., 172 (2016) 96–109.
  29. M.A. Shafer, C.A. Fiebrich, D.S. Arndt, S.E. Fredrickson, T.W. Hughes, Quality assurance procedures in the Oklahoma Mesonetwork, J. Atmos. Oceanic Technol., 17 (2000) 474–494.
  30. S. Feng, Q. Hu, W. Qian, Quality control of daily meteorological data in China, 1951–2000: a new dataset, Int. J. Climatol.: J.R. Meteorolog. Soc., 24 (2004) 853–870.
  31. V. Nourani, M.T. Alami, M.H. Aminfar, A combined neuralwavelet model for prediction of Ligvanchai watershed precipitation, Eng. Appl. Artif. Intell., 22 (2009) 466–472.
  32. J. Abdullahi, G. Elkiran, Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network, Procedia Comput. Sci., 120 (2017) 276–283.
  33. J. Abdullahi, G. Elkiran, V. Nourani, Application of Artificial Neural Network to Predict Reference Evaporation in Famagusta, North Cyprus, 11th International Scientific Conference on Production Engineering Development and Modernization of Production, Bihac, Bosnia, 2017, pp. 549–554.
  34. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989) 359–366.
  35. J.A. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett., 9 (1999) 293–300.
  36. S.G. Cao, Y.B. Liu, Y.P. Wang, A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM, J. China Univ. Min. Technol., 18 (2008) 172–176.
  37. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, New York, 1987.
  38. M.K. Goyal, B. Bharti, J. Quilty, J. Adamowski, A. Pandey, Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS, Expert Syst. Appl., 41 (2014) 5267–5276.
  39. J.M. Bruton, R.W. McClendon, G. Hoogenboom, Estimating daily pan evaporation with artificial neural networks, Trans. ASAE, 43 (2000) 491–496.
  40. B. Simon-Gáspár, G. Soós, A. Anda, Pan evaporation is increased by submerged macrophytes, Hydrol. Earth Syst. Sci., 26 (2022) 4741–4756.
  41. L. Wang, O. Kisi, B. Hu, M. Bilal, M. Zounemat-Kermani, H. Li, Evaporation modelling using different machine learning techniques, Int. J. Climatol., 37 (2017c) 1076–1092.
  42. N.M. UNEP, D. Thomas, World Atlas of Desertification, Edward Arnold, London, 1992.