References

  1. H.C. Hong, F.Q. Huang, F.Y. Wang, L.X. Ding, H.J. Lin, Y. Liang, Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation, J. Hydrol., 476 (2013) 274–279.
  2. W. Ahmed, M. Kitajima, S. Tandukar, E. Haramoto, Recycled water safety: current status of traditional and emerging viral indicators, Curr. Opin. Environ. Sci. Health, 16 (2020) 62–72.
  3. L. Alexandrou, B.J. Meehan, O.A.H. Jones, Regulated and emerging disinfection by-products in recycled waters, Sci. Total Environ., 637 (2018) 1607–1616.
  4. H.C. Hong, Y.C. Lu, X.Y. Zhu, Q. Wu, L.G. Jin, Z.G. Jin, X.X. Wei, G.C. Ma, H.Y. Yu, Cytotoxicity of nitrogenous disinfection by-products: a combined experimental and computational study, Sci. Total Environ., 856 (2023) 159273, doi: 10.1016/j.scitotenv.2022.159273.
  5. X. Wei, M. Yang, Q. Zhu, E.D. Wagner, M.J. Plewa, Comparative quantitative toxicology and QSAR modeling of the haloacetonitriles: forcing agents of water disinfection by-product toxicity, Environ. Sci. Technol., 54 (2020) 8909–8918.
  6. M.T. Yang, X.R. Zhang, Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii, Environ. Sci. Technol., 47 (2013) 10868–10867.
  7. J.L. Lin, A.R. Ika, Minimization of halogenated DBP precursors by enhanced PACl coagulation: the impact of organic molecule fraction changes on DBP precursors destabilization with Al hydrates, Sci. Total Environ., 703 (2020) 134936, doi: 10.1016/j.scitotenv.2019.134936.
  8. R.K. Padhi, S. Subramanian, K.K. Satpathy, Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2 and ClO3sup>) during treatment of different source water with chlorine and chlorine dioxide, Chemosphere, 218 (2019) 540–550.
  9. R. Mompremier, Ó.A.F.Mariles, J.E.B. Bravo, K. Ghebremichael, Study of the variation of haloacetic acids in a simulated water distribution network, Water Supply, 19 (2019) 88–96.
  10. N. Beauchamp, C. Bouchard, C. Dorea, M. Rodriguez, Ultraviolet absorbance monitoring for removal of DBPprecursor in waters with variable quality: enhanced coagulation revisited, Sci. Total Environ., 717 (2020) 137225, doi: 10.1016/j.scitotenv.2020.137225.
  11. A.Z. Li, X. Zhao, R. Mao, H.J. Liu, J.H. Qu, Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection by-product formation potential, J. Hazard. Mater., 271 (2014) 228–235.
  12. B. Ramavandi, S. Farjadfar, M. Ardjmand, S. Dobaradaran, Effect of water quality and operational parameters on trihalomethane formation potential in Dez River water, Iran, Water Resour. Ind., 11 (2015) 1–12.
  13. Y.M. Zhao, F. Xiao, D.S. Wang, M.Q. Yan, Z. Bi, Disinfection by-product precursor removal by enhanced coagulation and their distribution in chemical fractions, J. Environ. Sci., 25 (2013) 2207–2213.
  14. D.S. Wang, Y.M. Zhao, M.Q. Yan, C.W.K. Chow, Removal of DBP precursors in micro-polluted source waters: a comparative study on the enhanced coagulation behavior, Sep. Purif. Technol., 118 (2013) 271–278.
  15. X.M. Sun, C.Y. Wu, Y.X. Zhou, W. Han, Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater, Chem. Eng. J., 369 (2019) 100–108.
  16. W. Chen, N. Habibul, X.Y. Liu, G.P. Sheng, H.Q. Yu, FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter, Environ. Sci. Technol., 49 (2015) 2052–2058.
  17. P. Rakruam, S. Wattanachira, Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration, J. Environ. Sci., 26 (2014) 529–536.
  18. C.J. Williams, D. Conrad, D.N. Kothawala, H.M. Baulch, Selective removal of dissolved organic matter affects the production and speciation of disinfection by-products, Sci. Total Environ., 652 (2019) 75–84.
  19. M.A. Zazouli, S. Nasseri, A.H. Mahvi, A.R. Mesdaghinia, M. Younecian, M. Gholami, Determination of hydrophobic and hydrophilic fractions of natural organic matter in raw water of Jalalieh and Tehranspars water treatment plants (Tehran), J. Appl. Sci., 7 (2007) 2651–2655.
  20. J.N. Song, X. Jin, X.C. Wang, P.K. Jin, Preferential binding properties of carboxyl and hydroxyl groups with aluminium salts for humic acid removal, Chemosphere, 234 (2019) 478–487.
  21. D.F. Ma, B.Y. Gao, C.F. Xia, Y. Wang, Q.Y. Yue, Q. Li, Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors, Bioresour. Technol., 166 (2014) 381–388.
  22. Q. Han, H. Yan, F. Zhang, N. Xue, Y. Wang, Y.B. Chu, B.Y. Gao, Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for bio-treated municipal wastewater: molecular weight, hydrophobicity/hydrophily and fluorescence, J. Hazard. Mater., 297 (2015) 119–126.
  23. B. Bruijns, R. Tiggelaar, H. Gardeniers, Dataset of the absorption, emission and excitation spectra and fluorescence intensity graphs of fluorescent cyanine dyes for the quantification of low amounts of dsDNA, Data Brief, 10 (2016) 132–143.
  24. S.B. Marina, E. Saioa, C.B. Yannick, A.G. Ryder, Investigating native state fluorescence emission of Immunoglobulin G using polarized excitation-emission matrix (pEEM) spectroscopy and PARAFAC, Chemom. Intell. Lab. Syst., 185 (2019) 1–11.
  25. P.K. Jin, J.N. Song, X.C. Wang, X. Jin Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant, J. Environ. Sci., 64 (2018) 181–189.
  26. L.C. Hua, S.J. Chao, C. Huang, Fluorescent and molecular weight dependence of THM and HAA formation from intracellular algogenic organic matter (IOM), Water Res., 148 (2019) 231–238.
  27. G. Korshin, C.W.K. Chow, R. Fabris, M. Drikas, Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights, Water Res., 43 (2009) 1541–1548.
  28. M.S. Siddique, X.J. Xiong, H.K. Yang, T. Maqbool, N. Graham, W.Z. Yu, Dynamic variations in DOM and DBPs formation potential during surface water treatment by ozonationnanofiltration: using spectroscopic indices approach, Chem. Eng. J., 427 (2022) 132010, doi: 10.1016/j.cej.2021.132010.
  29. A. Sardana, B. Cottrell, D. Soulsby, T.N. Aziz, Dissolved organic matter processing and photoreactivity in a wastewater treatment constructed wetland, Sci. Total Environ., 648 (2019) 923–934.
  30. Z.P. Liu, W.H. Wu, P. Shi, J.S. Guo, J. Cheng, Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation, Waste Manage., 41 (2015) 111–118.
  31. Y.X. Sun, Q.Y. Wu, H.Y. Hu, J. Tian, Effects of operating conditions on THMs and HAAs formation during wastewater chlorination, J. Hazard. Mater., 168 (2009) 1290–1295.
  32. N. Beauchamp, C. Bouchard, C. Dorea, M. Rodriguez, Ultraviolet absorbance monitoring for removal of DBPprecursor in waters with variable quality: enhanced coagulation revisited, Sci. Total Environ., 717 (2020) 137225, doi: 10.1016/j.scitotenv.2020.137225.
  33. J.Y. Jiang, X.R. Zhang, X.H. Zhu, Y. Li, Removal of intermediate aromatic halogenated DBPs by activated carbon adsorption: a new approach to controlling halogenated DBPs in chlorinated drinking water, Environ. Sci. Technol., 51 (2017) 3435–3444.
  34. L.C. Hua, S.J. Chao, K. Huang, C. Huang, Characteristics of low and high SUVA precursors: relationships among molecular weight, fluorescence, and chemical composition with DBP formation, Sci. Total Environ., 727 (2020) 138638, doi: 10.1016/j.scitotenv.2020.138638.