References

  1. N. Zouli, Ceria-incorporated activated carbon composite as electrode material for capacitive deionization, Int. J. Electrochem. Sci, 17 (2022) 22042, doi: 10.20964/2022.04.02.
  2. WHO, Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years Into the SDGs, World Health Organization, Geneva, 2021.
  3. N. Savage, M.S. Diallo, Nanomaterials and water purification: opportunities and challenges, J. Nanopart. Res., 7 (2005) 331–342.
  4. M.W. Saleem, Y. Jande, M. Asif, W.-S. Kim, Hybrid CV-CC operation of capacitive deionization in comparison with constant current and constant voltage, Sep. Sci. Technol., 51 (2016) 1063–1069.
  5. P. Díaz, Z. González, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Evaluating capacitive deionization for water desalination by direct determination of chloride ions, Desalination, 344 (2014) 396–401.
  6. R. Chen, T. Sheehan, J.L. Ng, M. Brucks, X. Su, Capacitive deionization and electrosorption for heavy metal removal, Environ. Sci. Water Res. Technol., 6 (2020) 258–282.
  7. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  8. T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H.S. Park, D. Zhang, Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy, Environ. Sci. Nano, 5 (2018) 2722–2730.
  9. S. Ahualli, G.R. Iglesias, Á.V. Delgado, Chapter 8 – Principles and Theoretical Models of CDI: Experimental Approaches, S. Ahualli, Á.V. Delgado, Eds., Interface Science and Technology, Granada, Vol. 24, 2018, pp. 169–192.
  10. J. Han, L. Shi, T. Yan, J. Zhang, D. Zhang, Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization, Environ. Sci. Nano, 5 (2018) 2337–2345.
  11. G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, F. Zaviska, Comparative investigation of activated carbon electrode and a novel activated carbon/graphene oxide composite electrode for an enhanced capacitive deionization, Materials, 13 (2020) 5185, doi: 10.3390/ma13225185.
  12. K. Rambabu, G. Bharath, A. Hai, S. Luo, K. Liao, M.A. Haija, F. Banat, M. Naushad, Development of watermelon rind derived activated carbon/manganese ferrite nanocomposite for cleaner desalination by capacitive deionization, J. Cleaner Prod., 272 (2020) 122626, doi: 10.1016/j.jclepro.2020. 122626.
  13. M. Takayama, Antimicrobial product and antimicrobial agent; Kokin seihin to kokinzai no sayo, J. Petrotech., 21 (1998) 63–68.
  14. N. Liu, P. Ren, A. Saleem, W. Feng, J. Huo, H. Ma, S. Li, P. Li, W. Huang, Interfaces, simultaneous efficient decontamination of bacteria and heavy metals via capacitive deionization using polydopamine/ polyhexamethylene guanidine co-deposited activated carbon electrodes, ACS Appl. Mater. Interfaces, 13 (2021) 61669–61680.
  15. M. Diana, Disinfection by-products potentially responsible for the association between chlorinated drinking water and bladder cancer: a review, Water Res., 162 (2019) 492–504.
  16. D. Stalter, Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products, Water Res., 91 (2016) 19–30.
  17. S. Tang, J. Zheng, Antibacterial activity of silver nanoparticles: structural effects, Adv. Healthcare Mater., 7 (2018) e1701503, doi: 10.1002/adhm.201701503.
  18. S. Sathiyaraj, G. Suriyakala, A. Dhanesh Gandhi, R. Babujanarthanam, K.S. Almaary, T.-W. Chen, K. Kaviyarasu, Biosynthesis, characterization, and antibacterial activity of gold nanoparticles, J. Infect. Public Health, 14 (2021) 1842–1847.
  19. M.K.A. Mohammed, M.R. Mohammad, M.S. Jabir, D.S. Ahmed, Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes, IOP Conf. Ser.: Mater. Sci. Eng., 757 (2020) 012028, doi: 10.1088/1757-899X/757/1/012028.
  20. A.S. Abdallah, Y.A. Jande, R.L. Machunda, Evaluation of anti-microbial activities of silver nanoparticles embedded in capacitive deionization electrodes, Desal. Water Treat., 163 (2019) 206–215.
  21. A.S. Yasin, J. Jeong, I.M.A. Mohamed, C.H. Park, C.S. Kim, Fabrication of N-doped &SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization, J. Alloys Compd., 729 (2017) 764–775.
  22. Y. Wang, A.G. El-Deen, P. Li, B.H. Oh, Z. Guo, M.M. Khin, Y.S. Vikhe, J. Wang, R.G. Hu, R.M. Boom, High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating, ACS Nano, 9 (2015) 10142–10157.
  23. Y.-X. Hou, H. Abdullah, D.-H. Kuo, S.-J. Leu, N.S. Gultom, C.-H. Su, A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application, Compos. B. Eng., 133 (2018) 166–176.
  24. H. Yoon, J. Lee, T. Min, G. Lee, M. Oh, High performance hybrid capacitive deionization with a Ag-coated activated carbon electrode, Environ. Sci. Water Res. Technol., 7 (2021) 1315–1321.
  25. M.C. Stensberg, Q. Wei, E.S. McLamore, D.M. Porterfield, A. Wei, M.S. Sepúlveda, Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging, Nanomedicine, 6 (2011) 879–898.
  26. A. Albanese, W.C.W. Chan, Effect of gold nanoparticle aggregation on cell uptake and toxicity, ACS Nano, 5 (2011) 5478–5489.
  27. C. Cheng, Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells, Biomaterials, 30 (2009) 4152–4160.
  28. M.C. Duch, Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung, Nano Lett., 11 (2011) 5201–5207.
  29. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology, SN Appl. Sci., 1 (2019) 607, doi: 10.1007/s42452-019-0592-3.
  30. J. Sawai, T. Yoshikawa, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay, J. Appl. Microbiol., 96 (2004) 803–809.
  31. B. Tian, Y. Liu, Antibacterial applications and safety issues of silica‐based materials: a review, Int. J. Appl. Ceram. Technol., 18 (2021) 289–301.
  32. T. Tay, S. Ucar, S. Karagöz, Preparation and characterization of activated carbon from waste biomass, J. Hazard. Mater., 165 (2009) 481–485.
  33. M. Guzman, J. Dille, S. Godet, Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gramnegative bacteria, Nanomed. Nanotechnol. Biol. Med., 8 (2012) 37–45.
  34. J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature, Int. J. Nanomed., 7 (2012) 2767–2781.
  35. S.M. Dizaj, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng., C, 44 (2014) 278–284.
  36. L. Chang, Y. Yu, X. Duan, W. Liu, Capacitive deionization performance of activated carbon electrodes prepared by a novel liquid binder, Sep. Sci. Technol., 48 (2012) 359–365.
  37. S.J. Mohammed, H.H.H. Amin, S.B. Aziz, A.M. Sha, S. Hassan, J.M. Abdul Aziz, H.S. Rahman, Structural characterization, antimicrobial activity, and in vitro cytotoxicity effect of black seed oil, Evidence-Based Complementary Altern. Med., 2019 (2019) 6515671, doi: 10.1155/2019/6515671.
  38. L. Shkodenko, I. Kassirov, E. Koshel, Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations, Microorganisms, 8 (2020) 1545, doi: 10.3390/microorganisms8101545.
  39. V. Stanić, S.B. Tanasković, Chapter 11 – Antibacterial Activity of Metal Oxide Nanoparticles, S. Rajendran, A. Mukherjee, T.A. Nguyen, C. Godugu, R.K. Shukla, Eds., Nanotoxicity: Prevention and Antibacterial Applications of Nanomaterials Micro and Nano Technologies, Serbia, 2020, pp. 241–274.
  40. A. Raghunath, E. Perumal, Metal oxide nanoparticles as antimicrobial agents: a promise for the future, Int. J. Antimicrob. Agents, 49 (2017) 137–152.
  41. K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Antimicrobial activity of metal and metal-oxide based nanoparticles, Adv. Ther., 1 (2018) 1700033, doi: 10.1002/adtp.201700033.
  42. W. Zhang, Y. Li, J. Niu, Y. Chen, Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects, Langmuir, 29 (2013) 4647–4651.
  43. S. Dahiya, A. Singh, B.K. Mishra, Capacitive deionized hybrid systems for wastewater treatment and desalination: a review on synergistic effects, mechanisms and challenges, Chem. Eng. J., 417 (2021) 128129, doi: 10.1016/j.cej.2020.128129.
  44. C.-H. Hou, C.-Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124–129.
  45. D. Deng, W. Aouad, W.A. Braff, S. Schlumpberger, M.E. Suss, M.Z. Bazant, Water purification by shock electrodialysis: deionization, filtration, separation, and disinfection, Desalination, 357 (2015) 77–83.
  46. Y. Oren, H. Tobias, A. Soffer, Removal of bacteria from water by electroadsorption on porous carbon electrodes, Bioelectrochem. Bioenerg., 11 (1983) 347–351.
  47. T. Kristian Stevik, A. Kari, G. Ausland, J. Fredrik Hanssen, Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review, Water Res., 38 (2004) 1355–1367.
  48. D. Paul, S. Mangla, S. Neogi, Antibacterial study of CuO-NiOZnO trimetallic oxide nanoparticle, Mater. Lett., 271 (2020) 127740, doi: 10.1016/j.matlet.2020.127740.
  49. B. Chapman, T. Ross, Escherichia coli and Salmonella enterica are protected against acetic acid, but not hydrochloric acid, by hypertonicity, Appl. Environ. Microbiol., 75 (2009) 3605–3610.
  50. D.A. Lytle, Electrophoretic mobilities of Escherichia coli O157:H7 and wild-type Escherichia coli strains, Appl. Environ. Microbiol., 65 (1999) 3222–3225.
  51. B. Tansel, Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects, Sep. Purif. Technol., 86 (2012) 119–126.
  52. R. Uwayid, E.N. Guyes, A.N. Shocron, J. Gilron, M. Elimelech, M.E. Suss, Perfect divalent cation selectivity with capacitive deionization, Water Res., 210 (2022) 117959, doi: 10.1016/j.watres.2021.117959.
  53. G.-H. Huang, T.-C. Chen, S.-F. Hsu, Y.-H. Huang, S.-H. Chuang, Capacitive deionization (CDI) for removal of phosphate from aqueous solution, Desal. Water Treat., 52 (2014) 759–765.
  54. S. Cao, T. Chen, S. Zheng, Y. Bai, H. Pang, High‐performance capacitive deionization and killing microorganism in surface‐water by ZIF‐9 derived carbon composites, Small Methods, 5 (2021) 2101070, doi: 10.1002/smtd.202101070.
  55. F. Janpoora, A. Torabiana, H.A. Panahib, M. Baghdadia, Capacitive deionization and disinfection of water using graphene oxide-dendrimer-silver coated electrodes, Desal. Water Treat., 216 (2021) 129–139.
  56. K. Laxman, M.T.Z. Myint, M. Al Abri, P. Sathe, S. Dobretsov, J. Dutta, Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes, Desalination, 362 (2015) 126–132.
  57. A.G. El-Deen, R.M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park, J.-H. Choi, Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization, ACS Appl. Mater. Interfaces, 8 (2016) 25313–25325.
  58. M.I. Gil, F. López-Gálvez, S. Andújar, M. Moreno, A. Allende, Disinfection by-products generated by sodium hypochlorite and electrochemical disinfection in different process wash water and fresh-cut products and their reduction by activated carbon, Food Control, 100 (2019) 46–52.
  59. J.M. Martins, S. Majdalani, E. Vitorge, A. Desaunay, A. Navel, V. Guiné, J.F. Daïan, E. Vince, H. Denis, J.P. Gaudet, Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil, Environ. Sci. Processes Impacts, 15 (2013) 347–356.
  60. J. Marugán, R. van Grieken, C. Pablos, Kinetics and influence of water composition on photocatalytic disinfection and photocatalytic oxidation of pollutants, Environ. Technol., 31 (2010) 1435–1440.
  61. J.L. Del Pozo, M.S. Rouse, J.N. Mandrekar, J.M. Steckelberg, R. Patel, The electricidal effect: reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current, Antimicrob. Agents Chemother., 53 (2009) 41–45.