References
- N. Zouli, Ceria-incorporated activated carbon composite
as electrode material for capacitive deionization, Int.
J. Electrochem. Sci, 17 (2022) 22042, doi: 10.20964/2022.04.02.
- WHO, Progress on Household Drinking Water, Sanitation and
Hygiene 2000–2020: Five Years Into the SDGs, World Health
Organization, Geneva, 2021.
- N. Savage, M.S. Diallo, Nanomaterials and water purification:
opportunities and challenges, J. Nanopart. Res., 7 (2005)
331–342.
- M.W. Saleem, Y. Jande, M. Asif, W.-S. Kim, Hybrid CV-CC
operation of capacitive deionization in comparison with
constant current and constant voltage, Sep. Sci. Technol.,
51 (2016) 1063–1069.
- P. Díaz, Z. González, M. Granda, R. Menéndez, R. Santamaría,
C. Blanco, Evaluating capacitive deionization for water
desalination by direct determination of chloride ions,
Desalination, 344 (2014) 396–401.
- R. Chen, T. Sheehan, J.L. Ng, M. Brucks, X. Su, Capacitive
deionization and electrosorption for heavy metal removal,
Environ. Sci. Water Res. Technol., 6 (2020) 258–282.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser,
Water desalination via capacitive deionization: what is it and
what can we expect from it?, Energy Environ. Sci., 8 (2015)
2296–2319.
- T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H.S. Park, D. Zhang,
Capacitive deionization of saline water using sandwich-like
nitrogen-doped graphene composites via a self-assembling
strategy, Environ. Sci. Nano, 5 (2018) 2722–2730.
- S. Ahualli, G.R. Iglesias, Á.V. Delgado, Chapter 8 – Principles
and Theoretical Models of CDI: Experimental Approaches,
S. Ahualli, Á.V. Delgado, Eds., Interface Science and
Technology, Granada, Vol. 24, 2018, pp. 169–192.
- J. Han, L. Shi, T. Yan, J. Zhang, D. Zhang, Removal of ions
from saline water using N, P co-doped 3D hierarchical carbon
architectures via capacitive deionization, Environ. Sci. Nano,
5 (2018) 2337–2345.
- G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, F. Zaviska,
Comparative investigation of activated carbon electrode and a
novel activated carbon/graphene oxide composite electrode for
an enhanced capacitive deionization, Materials, 13 (2020) 5185,
doi: 10.3390/ma13225185.
- K. Rambabu, G. Bharath, A. Hai, S. Luo, K. Liao, M.A. Haija,
F. Banat, M. Naushad, Development of watermelon rind
derived activated carbon/manganese ferrite nanocomposite
for cleaner desalination by capacitive deionization, J.
Cleaner Prod., 272 (2020) 122626, doi: 10.1016/j.jclepro.2020.
122626.
- M. Takayama, Antimicrobial product and antimicrobial agent;
Kokin seihin to kokinzai no sayo, J. Petrotech., 21 (1998)
63–68.
- N. Liu, P. Ren, A. Saleem, W. Feng, J. Huo, H. Ma, S.
Li, P. Li, W. Huang, Interfaces, simultaneous efficient
decontamination of bacteria and heavy metals
via capacitive deionization using polydopamine/
polyhexamethylene guanidine co-deposited activated
carbon electrodes, ACS Appl. Mater. Interfaces, 13 (2021)
61669–61680.
- M. Diana, Disinfection by-products potentially responsible for
the association between chlorinated drinking water and bladder
cancer: a review, Water Res., 162 (2019) 492–504.
- D. Stalter, Fingerprinting the reactive toxicity pathways of
50 drinking water disinfection by-products, Water Res., 91
(2016) 19–30.
- S. Tang, J. Zheng, Antibacterial activity of silver nanoparticles:
structural effects, Adv. Healthcare Mater., 7 (2018) e1701503,
doi: 10.1002/adhm.201701503.
- S. Sathiyaraj, G. Suriyakala, A. Dhanesh Gandhi,
R. Babujanarthanam, K.S. Almaary, T.-W. Chen, K. Kaviyarasu,
Biosynthesis, characterization, and antibacterial activity of gold
nanoparticles, J. Infect. Public Health, 14 (2021) 1842–1847.
- M.K.A. Mohammed, M.R. Mohammad, M.S. Jabir,
D.S. Ahmed, Functionalization, characterization, and antibacterial
activity of single wall and multi wall carbon
nanotubes, IOP Conf. Ser.: Mater. Sci. Eng., 757 (2020) 012028,
doi: 10.1088/1757-899X/757/1/012028.
- A.S. Abdallah, Y.A. Jande, R.L. Machunda, Evaluation of
anti-microbial activities of silver nanoparticles embedded
in capacitive deionization electrodes, Desal. Water Treat.,
163 (2019) 206–215.
- A.S. Yasin, J. Jeong, I.M.A. Mohamed, C.H. Park, C.S. Kim,
Fabrication of N-doped &SnO2-incorporated activated carbon to
enhance desalination and bio-decontamination performance for
capacitive deionization, J. Alloys Compd., 729 (2017) 764–775.
- Y. Wang, A.G. El-Deen, P. Li, B.H. Oh, Z. Guo, M.M. Khin,
Y.S. Vikhe, J. Wang, R.G. Hu, R.M. Boom, High-performance
capacitive deionization disinfection of water with graphene
oxide-graft-quaternized chitosan nanohybrid electrode coating,
ACS Nano, 9 (2015) 10142–10157.
- Y.-X. Hou, H. Abdullah, D.-H. Kuo, S.-J. Leu, N.S. Gultom,
C.-H. Su, A comparison study of SiO2/nano metal oxide
composite sphere for antibacterial application, Compos. B.
Eng., 133 (2018) 166–176.
- H. Yoon, J. Lee, T. Min, G. Lee, M. Oh, High performance hybrid
capacitive deionization with a Ag-coated activated carbon
electrode, Environ. Sci. Water Res. Technol., 7 (2021) 1315–1321.
- M.C. Stensberg, Q. Wei, E.S. McLamore, D.M. Porterfield, A. Wei,
M.S. Sepúlveda, Toxicological studies on silver nanoparticles:
challenges and opportunities in assessment, monitoring and
imaging, Nanomedicine, 6 (2011) 879–898.
- A. Albanese, W.C.W. Chan, Effect of gold nanoparticle
aggregation on cell uptake and toxicity, ACS Nano, 5 (2011)
5478–5489.
- C. Cheng, Toxicity and imaging of multi-walled carbon
nanotubes in human macrophage cells, Biomaterials, 30 (2009)
4152–4160.
- M.C. Duch, Minimizing oxidation and stable nanoscale
dispersion improves the biocompatibility of graphene in the
lung, Nano Lett., 11 (2011) 5201–5207.
- M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and
their applications in nanotechnology, SN Appl. Sci., 1 (2019)
607, doi: 10.1007/s42452-019-0592-3.
- J. Sawai, T. Yoshikawa, Quantitative evaluation of antifungal
activity of metallic oxide powders (MgO, CaO and ZnO) by
an indirect conductimetric assay, J. Appl. Microbiol., 96 (2004)
803–809.
- B. Tian, Y. Liu, Antibacterial applications and safety issues of
silica‐based materials: a review, Int. J. Appl. Ceram. Technol.,
18 (2021) 289–301.
- T. Tay, S. Ucar, S. Karagöz, Preparation and characterization
of activated carbon from waste biomass, J. Hazard. Mater.,
165 (2009) 481–485.
- M. Guzman, J. Dille, S. Godet, Synthesis and antibacterial
activity of silver nanoparticles against gram-positive and gramnegative
bacteria, Nanomed. Nanotechnol. Biol. Med., 8 (2012)
37–45.
- J.T. Seil, T.J. Webster, Antimicrobial applications of
nanotechnology: methods and literature, Int. J. Nanomed.,
7 (2012) 2767–2781.
- S.M. Dizaj, Antimicrobial activity of the metals and metal oxide
nanoparticles, Mater. Sci. Eng., C, 44 (2014) 278–284.
- L. Chang, Y. Yu, X. Duan, W. Liu, Capacitive deionization
performance of activated carbon electrodes prepared by a novel
liquid binder, Sep. Sci. Technol., 48 (2012) 359–365.
- S.J. Mohammed, H.H.H. Amin, S.B. Aziz, A.M. Sha, S. Hassan,
J.M. Abdul Aziz, H.S. Rahman, Structural characterization,
antimicrobial activity, and in vitro cytotoxicity effect of black
seed oil, Evidence-Based Complementary Altern. Med., 2019
(2019) 6515671, doi: 10.1155/2019/6515671.
- L. Shkodenko, I. Kassirov, E. Koshel, Metal oxide
nanoparticles against bacterial biofilms: perspectives and
limitations, Microorganisms, 8 (2020) 1545, doi: 10.3390/microorganisms8101545.
- V. Stanić, S.B. Tanasković, Chapter 11 – Antibacterial Activity
of Metal Oxide Nanoparticles, S. Rajendran, A. Mukherjee,
T.A. Nguyen, C. Godugu, R.K. Shukla, Eds., Nanotoxicity:
Prevention and Antibacterial Applications of Nanomaterials
Micro and Nano Technologies, Serbia, 2020, pp. 241–274.
- A. Raghunath, E. Perumal, Metal oxide nanoparticles as
antimicrobial agents: a promise for the future, Int. J. Antimicrob.
Agents, 49 (2017) 137–152.
- K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Antimicrobial
activity of metal and metal-oxide based nanoparticles, Adv.
Ther., 1 (2018) 1700033, doi: 10.1002/adtp.201700033.
- W. Zhang, Y. Li, J. Niu, Y. Chen, Photogeneration of reactive
oxygen species on uncoated silver, gold, nickel, and silicon
nanoparticles and their antibacterial effects, Langmuir,
29 (2013) 4647–4651.
- S. Dahiya, A. Singh, B.K. Mishra, Capacitive deionized hybrid
systems for wastewater treatment and desalination: a review on
synergistic effects, mechanisms and challenges, Chem. Eng. J.,
417 (2021) 128129, doi: 10.1016/j.cej.2020.128129.
- C.-H. Hou, C.-Y. Huang, A comparative study of electrosorption
selectivity of ions by activated carbon electrodes in capacitive
deionization, Desalination, 314 (2013) 124–129.
- D. Deng, W. Aouad, W.A. Braff, S. Schlumpberger, M.E. Suss,
M.Z. Bazant, Water purification by shock electrodialysis:
deionization, filtration, separation, and disinfection,
Desalination, 357 (2015) 77–83.
- Y. Oren, H. Tobias, A. Soffer, Removal of bacteria from water by
electroadsorption on porous carbon electrodes, Bioelectrochem.
Bioenerg., 11 (1983) 347–351.
- T. Kristian Stevik, A. Kari, G. Ausland, J. Fredrik Hanssen,
Retention and removal of pathogenic bacteria in wastewater
percolating through porous media: a review, Water Res.,
38 (2004) 1355–1367.
- D. Paul, S. Mangla, S. Neogi, Antibacterial study of CuO-NiOZnO
trimetallic oxide nanoparticle, Mater. Lett., 271 (2020)
127740, doi: 10.1016/j.matlet.2020.127740.
- B. Chapman, T. Ross, Escherichia coli and Salmonella enterica
are protected against acetic acid, but not hydrochloric acid, by
hypertonicity, Appl. Environ. Microbiol., 75 (2009) 3605–3610.
- D.A. Lytle, Electrophoretic mobilities of Escherichia coli O157:H7
and wild-type Escherichia coli strains, Appl. Environ. Microbiol.,
65 (1999) 3222–3225.
- B. Tansel, Significance of thermodynamic and physical
characteristics on permeation of ions during membrane
separation: hydrated radius, hydration free energy and viscous
effects, Sep. Purif. Technol., 86 (2012) 119–126.
- R. Uwayid, E.N. Guyes, A.N. Shocron, J. Gilron, M. Elimelech,
M.E. Suss, Perfect divalent cation selectivity with capacitive
deionization, Water Res., 210 (2022) 117959, doi: 10.1016/j.watres.2021.117959.
- G.-H. Huang, T.-C. Chen, S.-F. Hsu, Y.-H. Huang, S.-H. Chuang,
Capacitive deionization (CDI) for removal of phosphate from
aqueous solution, Desal. Water Treat., 52 (2014) 759–765.
- S. Cao, T. Chen, S. Zheng, Y. Bai, H. Pang, High‐performance
capacitive deionization and killing microorganism in
surface‐water by ZIF‐9 derived carbon composites, Small
Methods, 5 (2021) 2101070, doi: 10.1002/smtd.202101070.
- F. Janpoora, A. Torabiana, H.A. Panahib, M. Baghdadia,
Capacitive deionization and disinfection of water using
graphene oxide-dendrimer-silver coated electrodes, Desal.
Water Treat., 216 (2021) 129–139.
- K. Laxman, M.T.Z. Myint, M. Al Abri, P. Sathe, S. Dobretsov,
J. Dutta, Desalination and disinfection of inland brackish
ground water in a capacitive deionization cell using nanoporous
activated carbon cloth electrodes, Desalination, 362 (2015)
126–132.
- A.G. El-Deen, R.M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park,
J.-H. Choi, Flexible 3D nanoporous graphene for desalination
and bio-decontamination of brackish water via asymmetric
capacitive deionization, ACS Appl. Mater. Interfaces, 8 (2016)
25313–25325.
- M.I. Gil, F. López-Gálvez, S. Andújar, M. Moreno, A. Allende,
Disinfection by-products generated by sodium hypochlorite
and electrochemical disinfection in different process wash
water and fresh-cut products and their reduction by activated
carbon, Food Control, 100 (2019) 46–52.
- J.M. Martins, S. Majdalani, E. Vitorge, A. Desaunay, A. Navel,
V. Guiné, J.F. Daïan, E. Vince, H. Denis, J.P. Gaudet, Role
of macropore flow in the transport of Escherichia coli cells
in undisturbed cores of a brown leached soil, Environ. Sci.
Processes Impacts, 15 (2013) 347–356.
- J. Marugán, R. van Grieken, C. Pablos, Kinetics and influence
of water composition on photocatalytic disinfection and
photocatalytic oxidation of pollutants, Environ. Technol.,
31 (2010) 1435–1440.
- J.L. Del Pozo, M.S. Rouse, J.N. Mandrekar, J.M. Steckelberg,
R. Patel, The electricidal effect: reduction of Staphylococcus and
Pseudomonas biofilms by prolonged exposure to low-intensity
electrical current, Antimicrob. Agents Chemother., 53 (2009)
41–45.