References

  1. Sh. Ebrahimi, M. Borghei, Formaldehyde biodegradation using an immobilized bed aerobic bioreactor with pumice stone as a support, Sci. Iran., 18 (2011) 1372–1376.
  2. L. Zhang, Formaldehyde: Exposure, Toxicity and Health Effects, Royal Society of Chemistry, 2018.
  3. L. Zhang, Chapter 1: Introduction to Formaldehyde, Issues in Toxicology, Royal Society of Chemistry, 2018.
  4. K. Veenagayathri, N. Vasudevan, Biodegradation of formaldehyde under saline conditions by a moderately halophilic bacterial consortium, Curr. World Environ.: An Int. Res. J. Environ. Sci., 5 (2010) 31–38.
  5. C. Jarusutthirak, K. Sangsawang, S. Mattaraj, R. Jiraratananon, Treatment of formaldehyde-containing wastewater using membrane bioreactor, J. Environ. Eng., 138 (2012) 265–271.
  6. P. Kowalik, Chemical Pretreatment of Formaldehyde Wastewater by Selected Advanced Oxidation Processes (AOPs), 2011.
  7. K. Raja Priya, S. Sandhya, K. Swaminathan, Kinetic analysis of treatment of formaldehyde containing wastewater in UAFB reactor, J. Chem. Eng., 148 (2009) 212–216.
  8. A. Hidalgo, A. Lopategi, M. Prieto, J.L. Serra, M.J. Llama, Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1, Appl. Microbiol. Biotechnol., 58 (2002) 260–264.
  9. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47 (2018) 2322–2356.
  10. X. Li, Y. Liu, C. Zhang, T. Wen, L. Zhuang, X. Wang, G. Song, D. Chen, Y. Ai, T. Hayat, Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions, J. Chem. Eng., 336 (2018) 241–252.
  11. L. Vidhya, M. Dhandapani, K. Shanthi, S. Kamala-Kannan, Removal of Cr(VI) from aqueous solution using coir pith biochar – an eco-friendly approach, Indian J. Chem. Technol., 25 (2018) 266–273.
  12. R.-M. Naik, S. Ratan, I. Singh, Use of orange peel as an adsorbent for the removal of Cr(VI) from its aqueous solution, Indian J. Chem. Technol., 25 (2018) 300–305.
  13. R. Sudha, P. Premkumar, Comparative studies on the removal of chromium(VI) from aqueous solutions using raw and modified Citrus limettioides peel, Indian J. Chem. Technol., 25 (2018), doi: 10.56042/ijct.v25i3.11706.
  14. M. Salman, M. Athar, U. Shafique, R. Rehman, Removal of formaldehyde from aqueous solution by adsorption on kaolin and bentonite: a comparative study, Turk. J. Eng. Environ. Sci., 36 (2012) 263–270.
  15. D.-Y. Ryu, T. Shimohara, K. Nakabayashi, J. Miyawaki, J.-I. Park, S.-H. Yoon, Urea/nitric acid co-impregnated pitchbased activated carbon fiber for the effective removal of formaldehyde, J. Ind. Eng. Chem., 80 (2019) 98–105.
  16. C.-J. Na, M.-J. Yoo, D.C. Tsang, H.W. Kim, K.-H. Kim, Highperformance materials for effective sorptive removal of formaldehyde in air, J. Hazard. Mater., 366 (2019) 452–465.
  17. A. Afkhami, H. Bagheri, T. Madrakian, Alumina nanoparticles grafted with functional groups as a new adsorbent in efficient removal of formaldehyde from water samples, Desalination, 281 (2011) 151–158.
  18. Z. Hejri, A.A. Seifkordi, A. Ahmadpour, S.M. Zebarjad, A. Maskooki, Biodegradable starch/poly(vinyl alcohol) film reinforced with titanium dioxide nanoparticles, Int. J. Miner. Metall. Mater., 20 (2013) 1001–1011.
  19. Z. Ghasemi, A. Seif, T.S. Ahmadi, B. Zargar, F. Rashidi, G.M. Rouzbahani, Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution, Adv. Powder Technol., 23 (2012) 148–156.
  20. E. Petala, M. Baikousi, M.A. Karakassides, G. Zoppellaro, J. Filip, J. Tuček, K.C. Vasilopoulos, J. Pechoušek, R. Zbořil, Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water, Phys. Chem. Chem. Phys., 18 (2016) 10637–10646.
  21. Y. Lu, P.R. Chang, P. Zheng, X. Ma, Rectorite–TiO2–Fe3O4 composites: assembly, characterization, adsorption and photodegradation, Chem. Eng. J., 255 (2014) 49–54.
  22. S. Khosroyar, A. Arastehnodeh, Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide, Membr. Water Treat., 9 (2018) 481–487.
  23. Y.H. Okour, S.S. Ahmed, Recovery of Titania from Waste-Sludge of Majmaah Water Treatment Plant, The Third International Conference on Water, Energy and Environment (ICWEE), AUS, American University of Sharjah, UAE, 2015.
  24. S. Mehta, S. Patel, Recovery of titania from the bauxite sludge, J. Am. Chem. Soc., 73 (1951) 226–227.
  25. S.M. Khezri, A.A. Bloorchian, Titanium dioxide extraction from paint sludge of automotive industry case study: paint sludge of saipa paint shop, Environ. Eng. Manage. J., 8 (2009), doi: 10.30638/eemj.2009.021.
  26. K.-h. Lim, B.-h. Shon, Metal components (Fe, Al, and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves, Int. J. Emerg. Technol. Adv. Eng., 5 (2015) 25–32.
  27. X. Xie, L. Gao, Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations, Curr. Appl. Phys., 9 (2009) S185–S188.
  28. S. Suriyaraj, T. Vijayaraghavan, P. Biji, R. Selvakumar, Adsorption of fluoride from aqueous solution using different phases of microbially synthesized TiO2 nanoparticles, J. Environ. Chem. Eng., 2 (2014) 444–454.
  29. S. Sun, J. Ding, J. Bao, C. Gao, Z. Qi, C. Li, Photocatalytic oxidation of gaseous formaldehyde on TiO2: an in-situ DRIFTS study, Catal. Lett., 137 (2010) 239–246.
  30. H. Rong, Z. Liu, Q. Wu, D. Pan, J. Zheng, Formaldehyde removal by Rayon-based activated carbon fibers modified by P-aminobenzoic acid, Cellulose, 17 (2010) 205–214.
  31. R. Zhu, R. Chen, Y. Duo, S. Zhang, D. Xie, Y. Mei, An industrial scale synthesis of adipicdihydrazide (ADH)/polyacrylate hybrid with excellent formaldehyde degradation performance, Polymers, 11 (2019) 86, doi: 10.3390/polym11010086.
  32. S. Sobhanardakani, R. Zandipak, 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples, Environ. Monit. Assess., 187 (2015) 412, doi: 10.1007/s10661-015-4635-y.
  33. M. Danesh-khorasgani, H. Faghihian, M.H. Givianrad, P. Aberoomand-Azar, M. Saber-Tehrani, Synthesis and application of a novel mesoporous SBA-15 sorbent functionalized by 2,4 dinitrophenylhydrazine (DNPH) for simultaneous removal of Pb(II), Cr(III), Cd(II) and Co(II) from aqueous solutions: experimental design, kinetic, thermodynamic, and isotherm aspects, Adv. Powder Technol., 33 (2022) 103201, doi: 10.1016/j.apt.2021.07.010.
  34. M. Zarei, A. Hasani, Z. Hejri, Synthesis and characterization of biodegradable and antibacterial coverage based on Aloe vera/nanochitosan for bread packaging, J. Nanomater., 11 (2019) 119–130.
  35. Z. Hejri, A. Hasani, A. Davoudi Rad, Removal of Reactive Red 120 azo dye from aqueous solution with magnetic nanoparticles coated with chitosan, J. Appl. Chem., 15 (2020) 185–204.
  36. A. Hasani, M. Defe Jafari, Z. Hejri, M. Omidvar, Magnetic activated carbon synthesis to reduce COD from the wastewater of Parsian Khavaran fibers factory using hybrid system of adsorption and membrane, J. Appl. Chem., 14 (2019) 89–102.
  37. T. Nash, The colorimetric estimation of formaldehyde by means of the Hantzsch reaction, Biochem. J., 55 (1953) 416–421.
  38. T. Alsawy, E. Rashad, M. El-Qelish, R.H. Mohammed, A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment, npj Clean Water, 5 (2022) 29,
    doi: 10.1038/s41545-022-00172-3.
  39. G. Kianpour, R. Bagheri, A. Pourjavadi, H. Ghanbari, Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application: excellent flexibility and biocompatibility, Mater. Des., 215 (2022) 110523, doi: 10.1016/j.matdes.2022.110523.
  40. D.L. Liao, B.Q. Liao, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol., A, 187 (2007) 363–369.
  41. A. Kumar, P. Choudhary, A. Kumar, P.H.C. Camargo, V. Krishnan, Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis, Small, 18 (2022) 2101638, doi: 10.1002/smll.202101638.
  42. Z. Zhou, M. Wei, G. Yang, W. Du, F. Peng, Y. Fang, Y. Liu, S. Zhang, R. Qiu, Photoinduced electron-rich
    CuNi@C/TiO2 catalyst for highly efficient hydrogen production from formaldehyde aqueous solution, J. Alloys Compd., 936 (2022) 168360, doi: 10.1016/j.jallcom.2022.168360.
  43. C. Li, M. Gu, M. Gao, K. Liu, X. Zhao, N. Cao, J. Feng, Y. Ren, T. Wei, M. Zhang, N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation, J. Colloid Interface Sci., 609 (2022) 341–352.
  44. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol, Appl. Sci., 7 (2017) 49, doi: 10.3390/app7010049.
  45. S. Bagheri, K. Shameli, S.B. Abd Hamid, Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol–gel method, J. Chem., 2013 (2013) 848205, doi: 10.1155/2013/848205.
  46. T. Uma Devi, N. Lawrence, R. Ramesh Babu, K. Ramamurthi, G. Bhagavannarayana, Structural and optical characterization studies on 2,4-dinitrophenylhydrazine single crystal, Int. J. Miner. Metall. Mater., 9 (2010) 321–330.
  47. Z. Hejri, M. Hejri, M. Omidvar, S. Morshedi, A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution, Adv. Nano Res., 8 (2020) 1–11.
  48. Y. Le, D. Guo, B. Cheng, J. Yu, Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance, Appl. Surf. Sci., 274 (2013) 110–116.
  49. M. Bagheri, M. Nasiri, A. Talaiekhozani, I. Abedi, Equilibrium isotherms of formaldehyde elimination from the aqueous solutions containing natural adsorbents of rice bran and the resulting ashes, J. Hum. Environ. Health Promot., 4 (2018) 87–93.
  50. Z. Wang, M. Zhong, L. Chen, Coal-based granular activated carbon loaded with MnO2 as an efficient adsorbent for removing formaldehyde from aqueous solution, Desal. Water Treat., 57 (2016) 13225–13235.
  51. Y.-T. Huang, M.-C. Shih, Effect of linearized expressions of Langmuir equations on the prediction of the adsorption of methylene blue on rice husk, Int. J. Sci. Res. Publ., 6 (2016) 549–554.
  52. N. Benderdouche, B. Bestani, M. Hamzaoui, The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust-based activated carbon, J. Mater. Environ. Sci., 9 (2018) 1110–1118.
  53. B. Van der Bruggen, Freundlich Isotherm, Encyclopedia of Membranes, 2015.
  54. S. Srisuda, B. Virote, Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials, J. Environ. Sci., 20 (2008) 379–384.
  55. K.H. Chu, Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms, Ind. Eng. Chem. Res., 60 (2021) 13140–13147.
  56. S. Salvestrini, L. Ambrosone, F.-D. Kopinke, Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data, J. Mol. Liq., 352 (2022) 118762, doi: 10.1016/j. molliq.2022.118762.
  57. P. Saha, S. Chowdhury, Insight into adsorption thermodynamics, Thermodynamics, 16 (2011) 349–364.
  58. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  59. H.N. Tran, Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient Kd (qe/Ce) or Freundlich constant (KF): considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions, Adsorpt. Sci. Technol., 2022 (2022) 5553212, doi: 10.1155/2022/5553212.
  60. H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study, J. Environ. Chem. Eng., 9 (2021) 106674, doi: 10.1016/j.jece.2021.106674.
  61. B. Kakavandi, A. Esrafili, A. Mohseni-Bandpi, A. Jonidi Jafari, R. Rezaei Kalantary, Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution, Water Sci. Technol., 69 (2014) 147–155.
  62. D. Pereira, M.V. Gil, V.I. Esteves, N.J. Silva, M. Otero, V. Calisto, Ex-situ magnetic activated carbon for the adsorption of three pharmaceuticals with distinct physicochemical properties from real wastewater, J. Hazard. Mater., 443 (2023) 130258, doi: 10.1016/j.jhazmat.2022.130258.
  63. J. Barasarathi, P.S. Abdullah, E.C. Uche, Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater, Chemosphere, 305 (2022) 135384, doi: 10.1016/j.chemosphere.2022.135384.