References

  1. L.Q. Chu, W. He, F.L. Xu, Y.D. Tong, F.Q. Xu, Ecological risk assessment of toxic metal(loid)s for land application of sewage sludge in China, Sci. Total Environ., 836 (2022) 155549, doi: 10.1016/j.scitotenv.2022.155549.
  2. J.X. Shi, W.L. Huang, N. Wan, J. Wang, Effects of sodium acetate, glucose, and Chlorella powder as carbon source on enhanced treatment of phenolic compounds and NO2 ––N in coal pyrolysis wastewater, Fuel, 339 (2023) 126974, doi: 10.1016/j.fuel.2022.126974.
  3. J. Meng, J.L. Li, J.Z. Li, P. Antwi, K.W. Deng, C. Wang, G. Buelna, Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an up-flow microaerobic sludge reactor, Bioresour. Technol., 198 (2015) 884–890.
  4. G.J. Yang, D.B. Wang, Q. Yang, J.W. Zhao, Y.W. Liu, Q.L. Wang, G.M. Zeng, X.M. Li, H.L. Li, Effect of acetate to glycerol ratio on enhanced biological phosphorus removal, Chemosphere, 196 (2018) 78–86.
  5. H.Q. Liu, H.Y. Qiao, S.Q. Liu, G.X. Wei, H.L. Zhao, K. Li, F.K. Weng, Energy, environment and economy assessment of sewage sludge incineration technologies in China, Energy, 264 (2023) 126294,
    doi: 10.1016/j.energy.2022.126294.
  6. K. Hii, S. Baroutian, R. Parthasarathy, D.J. Gapes, N. Eshtiaghi, A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment, Bioresour. Technol., 155 (2014) 289–299.
  7. J. Li, E.R. Xiao, Z.B. Wu, The review of new technology on disposal of excess sludge, Acta Hydrob. Sin., 41 (2017) 1149–1156.
  8. W. Han, P.K. Jin, D.W. Chen, X.K. Liu, H. Jin, R. Wang, Y.J. Liu, Resource reclamation of municipal sewage sludge based on local conditions: a case study in Xi’an, China, J. Cleaner Prod., 316 (2021) 128189, doi: 10.1016/j.jclepro.2021.128189.
  9. S. Baroutian, A.M. Smit, D.J. Gapes, Relative influence of process variables during non-catalytic wet oxidation of municipal sludge, Bioresour. Technol., 148 (2013) 605–610.
  10. J.X. Fu, L.P. Ma, X. Jin, L. Wei, Optimization and reaction kinetics of extracting protein from sludge by thermal alkali hydrolysis, Environ. Sci. Technol., 44 (2021) 103–108.
  11. W. Lin, J.M. Guo, J. Zeng, R.L. Chen, H.H. Ngo, J. Nan, G.B. Li, J. Ma and A. Ding, Enhanced sludge dewaterability by ferrate/ferric chloride: the key role of Fe(IV) on the changes of EPS properties, Sci. Total Environ., 858 (2023) 159562, doi: 10.1016/j.scitotenv.2022.159562.
  12. L. Nazari, Z.S. Yuan, D. Santoro, S. Sarathy, D. Ho, D. Batstone, C.B. (Charles)Xu, M.B. Ray, Low-temperature thermal pre-treatment of municipal wastewater sludge: process optimization and effects on solubilization and anaerobic degradation, Water Res., 113 (2017) 111–123.
  13. H.Y. Jia, B.K. Liu, X.X. Zhang, J. Chen, W.H. Ren, Effects of ultrasonic treatment on the pyrolysis characteristics and kinetics of waste activated sludge, Environ. Res., 183 (2020) 109250, doi: 10.1016/j.envres.2020.109250.
  14. Y.N. Zhao, X.Y. Yan, J.H. Zhou, R. Li, S. Yang, B.F. Wang, R.N. Deng, Treatment of oily sludge by two-stage wet air oxidation, J. Energy Inst., 92 (2019) 1451–1457.
  15. M. Malhotra, A. Garg, Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions, J. Environ. Manage., 238 (2019) 72–83.
  16. D.D. Ge, C. Bian, H.P. Yuan, N.W. Zhu, An in-depth study on the deep-dewatering mechanism of waste activated sludge by ozonation pre-oxidation and chitosan re-flocculation conditioning, Sci. Total Environ., 714 (2020) 136627, doi: 10.1016/j.scitotenv.2020.136627.
  17. J. Liu, X. Zeng, J.F. Zhao, NaOH-enhanced catalytic wet air oxidation of pharmaceutical sludge, Environ. Prot. Chem. Ind., 37 (2017) 106–109.
  18. Y.X. Yan, Y.J. Zhang, J.L. Gao, L. Qin, F. Liu, W. Zeng, J.F. Wan, Intracellular and extracellular sources, transformation process and resource recovery value of proteins extracted from wastewater treatment sludge via alkaline thermal hydrolysis and enzymatic hydrolysis, Sci. Total Environ., 852 (2022) 158512, doi: 10.1016/j.scitotenv.2022.158512.
  19. G.H. Zhuo, Y.Y. Yan, XJ. Tan, X.H. Dai, Q. Zhou, Ultrasonicpretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature, J. Biotechnol., 159 (2012) 27–31.
  20. H.M. Xu, W.H. Qin, G.F. He, X.H. Dai, Optimization of combined ultrasonic and thermo-chemical pretreatment of waste activated sludge for enhanced disintegration, China Environ. Sci., 37 (2017) 3431–3436.
  21. N. Yang, S.C. Yang, X. Zheng, Inhibition of Maillard reaction during alkaline thermal hydrolysis of sludge, Sci. Total Environ., 8 (2022) 152497, doi: 10.1016/j.scitotenv.2021.152497.
  22. Z. Li, J.W. Lin, Y.Y. Hu, The effect of pretreatment of residual sludge with thermal–alkaline combined with hydrolysis process, J. South China Normal Univ., 51 (2019) 42–48.
  23. T.H. Kim, Y.K. Nam, C. Park, M. Lee, Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification, Bioresour. Technol., 100 (2009) 5694–5699.
  24. O. Suárez-Iglesias, J.L. Urrea, P. Oulego, S. Collado, M. Díaz, Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review, Sci. Total Environ., 584–585 (2017) 921–934.
  25. S.T. Cassini, M.C.E. Andrade, T.A. Abreu, R. Keller, R.F. Gonçalves, Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: effect on total EPS and fractions, Water Sci. Technol., 53 (2006) 51–58.
  26. W. Fang, P.Y. Zhang, G.M. Zhang, S.G. Jin, D.Y. Li, M.X. Zhang, X.Z. Xu, Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization, Bioresour. Technol., 168 (2014) 167–172.
  27. X.Y. Liu, H. Yang, J. Chang, Y.S. Bai, L.Y. Shi, B.J. Su, J. Han, D. Liang, Re-hydrolysis characteristics of alkaline fermentation liquid from waste activated sludge: feasibility as a carbon source for nitrogen removal, Process Saf. Environ. Prot., 165 (2022) 230–240.
  28. Q.S. Shen, F.Y. Ji, J.Z. Wei, L. Jiang, Q. Zhang, Y.X. Mao, Z.C. Liu, Nitrogen removal characteristic of A2O system with natural corncob supplemented into anoxic zone as carbon source, China Environ. Sci., 42 (2022) 1635–1642.
  29. D. Cordell, J.O. Drangert, S. White, The story of phosphorus: global food security and food for thought, Global Environ. Change, 19 (2009) 292–305.
  30. J.Q. Zhang, Z.J. Chen, Y.W. Liu, W. Wei, B.J. Ni, Phosphorus recovery from wastewater and sewage sludge as vivianite, J. Cleaner Prod., 370 (2022) 133439, doi: 10.1016/j.jclepro.2022.133439.
  31. A.V. Schenone, L.O. Conte, M.A. Botta, O.M. Alfano, Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM), J. Environ. Manage., 155 (2015) 177–183.
  32. X. Li, Q.L. Zhao, Recovery of ammonium-nitrogen from landfill leachate as a multinutrient fertilizer, Ecol. Eng., 20 (2003) 171–181.
  33. V. Arcas-Pilz, M. Rufí-Salís, F. Parada, A. Petit-Boix, X. Gabarrell, G. Villalba, Recovered phosphorus for a more resilient urban agriculture: assessment of the fertilizer potential of struvite in hydroponics, Sci. Total Environ., 799 (2021) 149424, doi: 10.1016/j.scitotenv.2021.149424.