References

  1. J. Campo, A. Masiá, C. Blasco, Y. Picó, Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins, J. Hazard. Mater., 263 (2013) 146–157.
  2. I.C. Yadav, N.L. Devi, J.H. Syed, Z. Cheng, J. Li, G. Zhang, K.C. Jones, Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India, Sci. Total Environ., 511 (2015) 123–137.
  3. V. Babu, M. Selvanayagam, E.I. Cengiz, E. Unlu, Histopathology of lambda-cyhalothrin on tissues (gill, kidney, liver and intestine) of Cirrhinus mrigala, Environ. Toxicol. Pharmacol., 24 (2007) 286–291.
  4. N. Rambabu, K. Jamil, Evaluation of cytogenetic effects of lambda-cyhalothrin on human lymphocytes, J. Biochem. Mol. Toxicol., 19 (2005) 304–310.
  5. Q. Wu, G. Zhao, C. Feng, C. Wang, Z. Wang, Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples, J. Chromatogr. A, 1218 (2011) 7936–7942.
  6. W.A. El-Said, D.M. Fouad, M.H. Ali, M.A. El-Gahami, Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides, Int. J. Environ. Sci. Technol., 15 (2018) 1731–1744.
  7. C. Gong, J. Lin, J. Lu, X. Zhao, Z. Cai, J. Fu, Advanced treatment of pesticide-containing wastewater using Fenton reagent enhanced by microwave electrodeless ultraviolet, BioMed Res. Int., 2015 (2015) 205903, doi: 10.1155/2015/205903.
  8. C. De Smedt, P. Spanoghe, S. Biswas, K. Leus, P. Van Der Voort, Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions, Adsorption, 21 (2015) 243–254.
  9. N. Tarannum, R. Khan, Cost-Effective Green Materials for the Removal of Pesticides from Aqueous Medium, M. Naushad, E. Lichtfouse, Eds., Green Materials for Wastewater Treatment. Environmental Chemistry for a Sustainable World, Vol. 38, Springer, Cham, 2020. doi: 10.1007/978-3-030-17724-9_5
  10. A.M. Youssef, M.E. El-Naggar, F.M. Malhat, H.M. El Sharkawi, Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film, J. Cleaner Prod., 206 (2019) 315–325.
  11. H. Xia, Removal of Lambda-Cyhalothrin by Water Hyacinth (Eichornia crassipes), 2nd International Conference on Bioinformatics and Biomedical Engineering, IEEE, Shanghai, China, 2008, pp. 3446–3450.
  12. C. De Smedt, F. Ferrer, K. Leus, P. Spanoghe, Removal of pesticides from aqueous solutions by adsorption on zeolites as solid adsorbents, Adsorpt. Sci. Technol., 33 (2015) 457–485.
  13. A. Mojiri, J.L. Zhou, B. Robinson, A. Ohashi, N. Ozaki, T. Kindaichi, H. Farraji, M. Vakili, Pesticides in aquatic environments and their removal by adsorption methods, Chemosphere, 253 (2020) 126646, doi: 10.1016/j.chemosphere.2020.126646.
  14. I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches, Environ. Technol. Innovation, 19 (2020) 101026, doi: 10.1016/j.eti.2020.101026.
  15. S. Heydari, L. Zare, H. Ghiassi, Plackett–Burman experimental design for the removal of diazinon pesticide from aqueous system by magnetic bentonite nanocomposites, J. Appl. Res. Water Wastewater, 6 (2019) 45–50.
  16. P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect, Chemosphere, 168 (2017) 1058–1067.
  17. W.-W. Tang, G.-M. Zeng, J.-L. Gong, Y. Liu, X.-Y. Wang, Y.-Y. Liu, Z.-F. Liu, L. Chen, X.-R. Zhang, D.-Z. Tu, Simultaneous adsorption of atrazine and Cu(II) from wastewater by magnetic multi-walled carbon nanotube, Chem. Eng. J., 211 (2012) 470–478.
  18. K. Shrivas, A. Ghosale, N. Nirmalkar, A. Srivastava, S.K. Singh, S.S. Shinde, Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles, Environ. Sci. Pollut. Res., 24 (2017) 24980–24988.
  19. B. Ouassyla, R. Marouf, O. Fatima, S. Jacques, Sewage sludge adsorbents used to remove lambda cyhalothrin from aqueous phase, Res. J. Chem. Environ., 23 (2019) 53–61.
  20. A. Ullah, M. Zahoor, S. Alam, Removal of ciprofloxacin from water through magnetic nanocomposite/membrane hybrid processes, Desal. Water Treat., 137 (2019) 260–272.
  21. M. Zahoor, A. Ullah, S. Alam, Removal of enrofloxacin from water through magnetic nanocomposites prepared from pineapple waste biomass, Surf. Eng. Appl. Electrochem., 55 (2019) 536–547.
  22. A. Ullah, M. Zahoor, S. Alam, R. Ullah, A.S. Alqahtani, H.M. Mahmood, Separation of levofloxacin from industry effluents using novel magnetic nanocomposite and membranes hybrid processes, BioMed Res. Int., 2019 (2019) 5276841, doi: 10.1155/2019/5276841.
  23. D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman Jr., Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172 (2011) 1111–1125.
  24. H. Mao, S. Wang, J.-Y. Lin, Z. Wang, J. Ren, Modification of a magnetic carbon composite for ciprofloxacin adsorption, J. Environ. Sci., 49 (2016) 179–188.
  25. Y. Tu, Z. Peng, P. Xu, H. Lin, X. Wu, L. Yang, J. Huang, Characterization and application of magnetic biochars from corn stalk by pyrolysis and hydrothermal treatment, BioResources, 12 (2017) 1077–1089.
  26. S. Zhang, H. Chen, L. Tao, C. Huang, M. Jiang, Z. Zhou, Magnetic activated carbon for efficient removal of Pb(II) from aqueous solution, Environ. Eng. Sci., 35 (2018) 111–120.
  27. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 786 (1960) 3973–3993.
  28. H. Mao, S. Wang, J.-Y. Lin, Z. Wang, J. Ren, Modification of a magnetic carbon composite for ciprofloxacin adsorption, J. Environ. Sci., 49 (2016) 179–188.
  29. G. Nazari, H. Abolghasemi, M. Esmaieli, Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon, J. Taiwan Inst. Chem. Eng., 58 (2016) 357–365.
  30. J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M.A. Ferro- García, I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170 (2009) 298–305.
  31. J.N. Genc, E.C. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice, Desal. Water Treat., 53 (2015) 785–793.
  32. W. Plazinski, W. Rudzinski, A. Plazinska, Theoretical models of sorption kinetics including a surface reaction mechanism: a review, Adv. Colloid Interface Sci., 152 (2009) 2–13.
  33. M. El-Kammah, E. Elkhatib, S. Gouveia, C. Cameselle, E. Aboukila, Enhanced removal of thiamethoxam from wastewater using waste-derived nanoparticles: adsorption performance and mechanisms, Environ. Technol. Innovation, 28 (2022) 102713, doi: 10.1016/j.eti.2022.102713.
  34. I. Lung, M.-L. Soran, A. Stegarescu, O. Opriş, Devrinol and triadimefon removal from aqueous solutions using CNTCOOH/MnO2/Fe3O4 nanocomposite, J. Iran. Chem. Soc., 19 (2022) 2031–2039.
  35. W. Zhaokun, J. Zhang, B. Hu, J. Yu, J. Wang, X. Guo, Graphene/Fe3O4 nanocomposite for effective removal of ten triazole fungicides from water solution: tebuconazole as an example for investigation of the adsorption mechanism by experimental and molecular docking study, J. Taiwan Inst. Chem. Eng., 95 (2019) 635–642.
  36. H. Motaghi, P. Arabkhani, M. Parvinnia, A. Asfaram, Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: optimization, mechanisms, regeneration, and application, Sep. Purif. Technol., 284 (2022) 120258, doi: 10.1016/j.seppur.2021.120258.
  37. O. Duman, C. Özcan, T.G. Polat, S. Tunç, Carbon nanotubebased magnetic and non-magnetic adsorbents for the highefficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites, Environ. Pollut., 244 (2019) 723–732.
  38. F.Z. Choumane, B. Benguella, Removal of acetamiprid from aqueous solutions with low-cost sorbents, Desal. Water Treat., 57 (2016) 419–430.