References

  1. L. Wang, W. Gu, Y. Liu, P. Liang, X. Zhang, X. Huang, Challenges, solutions and prospects of mainstream anammoxbased process for municipal wastewater treatment, Sci. Total Environ., 820 (2022) 153351, doi: 10.1016/j.scitotenv.2022.153351.
  2. M. Molinos-Senante, A. Maziotis, Evaluation of energy efficiency of wastewater treatment plants: the influence of the technology and aging factors, Appl. Energy, 310 (2022) 118535, doi: 10.1016/j.apenergy.2022.118535.
  3. D. Selișteanu, I.-M. Popescu, M. Roman, C. Șulea-Iorgulescu, S. Mehedințeanu, A software emulator for the modelling and control of an activated sludge process in a wastewater treatment plant, Processes, 9 (2021) 2054, doi: 10.3390/pr9112054.
  4. S. Du, Q. Yan, J. Qiao, Event-triggered PID control for wastewater treatment plants, J. Water Process Eng., 38 (2020) 101659, doi: 10.1016/j.jwpe.2020.101659.
  5. X. Song, Y. Zhao, Z. Song, C. Liu, Dissolved oxygen control in wastewater treatment based on robust PID controller, Int. J. Model. Identif., 15 (2012) 297–303.
  6. K. Saravana, K. Latha, A supervisory fuzzy logic control scheme to improve effluent quality of a wastewater treatment plant, J. Water Process Eng., 84 (2021) 3415–3424.
  7. W. Zhang, J. Qiao. Multi-variable direct self-organizing fuzzy neural network control for wastewater treatment process, Asian J. Control, 22 (2020) 716–728.
  8. J. Qiao, G. Han, H. Han, C. Yang, W. Li, Decoupling control for wastewater treatment process based on recurrent fuzzy neural network, Asian J. Control, 21 (2019) 1270–1280.
  9. W. Wei, N. Chen, Z. Zhang, Z. Liu, M. Zuo, U-model-based active disturbance rejection control for the dissolved oxygen in a wastewater treatment process, Math. Probl. Eng., 2020 (2020) 3507910, doi: 10.1155/2020/3507910.
  10. S. Zhang, P. Zhou, Y. Xie, T. Chai, Improved model-free adaptive predictive control method for direct
    data-driven control of a wastewater treatment process with high performance, J. Process Control, 110 (2022) 11–23.
  11. W. Wei, N. Chen, Z. Zhang, Z. Liu, M. Zuo, K. Liu, Y. Xia, A scalable-bandwidth extended state observer-based adaptive sliding-mode control for the dissolved oxygen in a wastewater treatment process, IEEE Trans. Cybern., 52 (2021) 13448–13457.
  12. J. Berberich, J. Köhler, M.A. Müller, F. Allgöwer, Data-driven model predictive control with stability and robustness guarantees, IEEE Trans. Autom. Control, 66 (2020) 1702–1717.
  13. B. Holenda, E. Domokos, A. Redey, J. Fazakas, Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control, Comput. Chem. Eng., 32 (2008) 1270–1278.
  14. M.A. Brdys, M. Grochowski, T. Gminski, K. Konarczak, M. Drewa, Hierarchical predictive control of integrated wastewater treatment systems, Control Eng. Pract., 16 (2008) 751–767.
  15. W. Shen, X. Chen, J.P. Corriou, Application of model predictive control to the BSM1 benchmark of wastewater treatment process, Comput. Chem. Eng., 32 (2008) 2849–2856.
  16. M. Mulas, S. Tronci, F. Corona, H. Haimi, P. Lindell, M. Heinonen, R. Baratti, Predictive control of an activated sludge process: an application to the Viikinmäki wastewater treatment plant, J. Process Control, 35 (2015) 89–100.
  17. W. Shen, X. Chen, M.N. Pons, J.P. Corriou, Model predictive control for wastewater treatment process with feedforward compensation, Chem. Eng. J., 155 (2009) 161–174.
  18. N. Boruah, B.K. Roy, Event triggered non-linear model predictive control for a wastewater treatment plant, J. Water Process Eng., 32 (2019) 100887, doi: 10.1016/j.jwpe.2019.100887.
  19. S, Du, Q. Zhang, H. Han, H. Sun, J. Qiao, Event-triggered model predictive control of wastewater treatment plants, J. Water Process Eng., 47 (2022) 102765, doi: 10.1016/j.jwpe.2022.102765.
  20. H. Han, S. Fu, H. Sun, C. Qin, J. Qiao, Modeling and control of wastewater treatment process with time delay based on event-triggered recursive least squares, Eng. Appl. Artif. Intell., 122 (2023) 106052, doi: 10.1016/j.engappai.2023.106052.
  21. H. Han, J. Qiao, Non-linear model-predictive control for industrial processes: an application to wastewater treatment process, IEEE Trans. Ind. Electron., 61 (2013) 1970–1982.
  22. H. Han, H. Qian, J. Qiao, Non-linear multiobjective modelpredictive control scheme for wastewater treatment process, J. Process Control, 24 (2014) 47–59.
  23. H. Han, Z. Liu, Y. Hou, J. Qiao, Data-driven multiobjective predictive control for wastewater treatment process, IEEE Trans. Ind. Electron., 16 (2019) 2767–2775.
  24. H. Han, S. Fu, H. Sun, J. Qiao, Hierarchical non-linear model predictive control with multi-time-scale for wastewater treatment process, J. Process Control, 108 (2021) 125–135.
  25. P.B. Cox, R. Tóth, Linear parameter-varying subspace identification: a unified framework, Automatica, 123 (2021) 109296, doi: 10.1016/j.automatica.2020.109296.
  26. M. Jalanko, Y. Sanchez, V. Mahalec, P. Mhaskar, Adaptive system identification of industrial ethylene splitter: a comparison of subspace identification and artificial neural networks, Comput. Chem. Eng., 147 (2021) 107240, doi: 10.1016/j.compchemeng.2021.107240.
  27. E.P. Reynders, Uncertainty quantification in data-driven stochastic subspace identification, Mech. Syst. Signal Process., 151 (2021) 107338, doi: 10.1016/j.ymssp.2020.107338.
  28. S. Qin, An overview of subspace identification, Comput. Chem. Eng., 30 (2006) 1502–1513.
  29. P. Zhou, S. Zhang, P. Dai, Recursive learning-based bilinear subspace identification for online modeling and predictive control of a complicated industrial process, IEEE Access, 8 (2020) 62531–62541.
  30. V. Vajpayee, S. Mukhopadhyay, A.P. Tiwari, Data-driven subspace predictive control of a nuclear reactor, IEEE Trans. Nucl. Sci., 65 (2017) 666–679.
  31. Al. Hasnain, F. Sahami, S. Kamalasadan, An online wide-area direct coordinated control architecture for power grid transient stability enhancement based on subspace identification, IEEE Trans. Ind. Appl., 57 (2021) 2896–2907.
  32. Q. Chen, H. Sheng, T. Zhang, A novel direct performance adaptive control of aero-engine
    using subspace-based improved model predictive control, Aerosp. Sci. Technol., 128 (2022) 107760, doi: 10.1016/j.ast.2022.107760.
  33. X. Luo, Y. Song, Data-driven predictive control of Hammerstein– Wiener systems based on subspace identification, Inf. Sci., 422 (2018) 447–461.
  34. Z. Li, X. Yuan, Y. Wang, C. Xie, Subspace predictive control with the data-driven event-triggered law for linear timeinvariant systems, J. Franklin Inst., 356 (2019) 8167–8181.
  35. M. Ahmadipour, S.R. Seydnejad, M. Barkhordari-Yazdi, Subspace-based deterministic identification of MIMO linear state-delayed systems, Circuits Syst. Signal Process., 39 (2020) 4067–4093.
  36. P. Zhou, H. Song, H. Wang, T. Chai, Data-driven non-linear subspace modeling for prediction and control of molten iron quality indices in blast furnace ironmaking, IEEE Trans. Control Syst. Technol., 25 (2016) 1761–1774.
  37. N. Patel, J. Nease, S. Aumi, C. Ewaschuk, J. Luo, P. Mhaskar, Integrating data-driven modeling with first-principles knowledge, Ind. Eng. Chem. Res., 59 (2020) 5103–5113.
  38. N. Patel, B. Corbett, P. Mhaskar, Model predictive control using subspace model identification, Comput. Chem. Eng., 149 (2021) 107276, doi: 10.1016/j.compchemeng.2021.107276.
  39. D. Ghosh, E. Hermonat, P. Mhaskar, S. Snowling, R. Goel, Hybrid modeling approach integrating first-principles models with subspace identification, Ind. Eng. Chem. Res., 58 (2019) 13533–13543.
  40. H. Zhou, J. Qiao, Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D, Appl. Intell., 49 (2019) 1098–1126.
  41. R. Yang, D. Wang, J. Qiao, Policy gradient adaptive critic design with dynamic prioritized experience replay for wastewater treatment process control, IEEE Trans. Ind. Inf., 18 (2021) 3150–3158.
  42. H. Han, H. Liu, J. Li, J. Qiao, Cooperative fuzzy-neural control for wastewater treatment process, IEEE Trans. Ind. Inf., 17 (2020) 5971–5981.