References
- L. Wang, W. Gu, Y. Liu, P. Liang, X. Zhang, X. Huang,
Challenges, solutions and prospects of mainstream anammoxbased
process for municipal wastewater treatment, Sci. Total
Environ., 820 (2022) 153351, doi: 10.1016/j.scitotenv.2022.153351.
- M. Molinos-Senante, A. Maziotis, Evaluation of energy
efficiency of wastewater treatment plants: the influence of the
technology and aging factors, Appl. Energy, 310 (2022) 118535,
doi: 10.1016/j.apenergy.2022.118535.
- D. Selișteanu, I.-M. Popescu, M. Roman, C. Șulea-Iorgulescu,
S. Mehedințeanu, A software emulator for the modelling and
control of an activated sludge process in a wastewater treatment
plant, Processes, 9 (2021) 2054, doi: 10.3390/pr9112054.
- S. Du, Q. Yan, J. Qiao, Event-triggered PID control for
wastewater treatment plants, J. Water Process Eng., 38 (2020)
101659, doi: 10.1016/j.jwpe.2020.101659.
- X. Song, Y. Zhao, Z. Song, C. Liu, Dissolved oxygen control in
wastewater treatment based on robust PID controller, Int. J.
Model. Identif., 15 (2012) 297–303.
- K. Saravana, K. Latha, A supervisory fuzzy logic control
scheme to improve effluent quality of a wastewater treatment
plant, J. Water Process Eng., 84 (2021) 3415–3424.
- W. Zhang, J. Qiao. Multi-variable direct self-organizing fuzzy
neural network control for wastewater treatment process,
Asian J. Control, 22 (2020) 716–728.
- J. Qiao, G. Han, H. Han, C. Yang, W. Li, Decoupling control
for wastewater treatment process based on recurrent fuzzy
neural network, Asian J. Control, 21 (2019) 1270–1280.
- W. Wei, N. Chen, Z. Zhang, Z. Liu, M. Zuo, U-model-based
active disturbance rejection control for the dissolved oxygen
in a wastewater treatment process, Math. Probl. Eng.,
2020 (2020) 3507910, doi: 10.1155/2020/3507910.
- S. Zhang, P. Zhou, Y. Xie, T. Chai, Improved model-free adaptive
predictive control method for direct
data-driven control
of a wastewater treatment process with high performance,
J. Process Control, 110 (2022) 11–23.
- W. Wei, N. Chen, Z. Zhang, Z. Liu, M. Zuo, K. Liu,
Y. Xia, A scalable-bandwidth extended state observer-based
adaptive sliding-mode control for the dissolved oxygen in a
wastewater treatment process, IEEE Trans. Cybern., 52 (2021)
13448–13457.
- J. Berberich, J. Köhler, M.A. Müller, F. Allgöwer, Data-driven
model predictive control with stability and robustness
guarantees, IEEE Trans. Autom. Control, 66 (2020) 1702–1717.
- B. Holenda, E. Domokos, A. Redey, J. Fazakas, Dissolved
oxygen control of the activated sludge wastewater treatment
process using model predictive control, Comput. Chem. Eng.,
32 (2008) 1270–1278.
- M.A. Brdys, M. Grochowski, T. Gminski, K. Konarczak,
M. Drewa, Hierarchical predictive control of integrated
wastewater treatment systems, Control Eng. Pract., 16 (2008)
751–767.
- W. Shen, X. Chen, J.P. Corriou, Application of model predictive
control to the BSM1 benchmark of wastewater treatment
process, Comput. Chem. Eng., 32 (2008) 2849–2856.
- M. Mulas, S. Tronci, F. Corona, H. Haimi, P. Lindell, M. Heinonen,
R. Baratti, Predictive control of an activated sludge process:
an application to the Viikinmäki wastewater treatment plant,
J. Process Control, 35 (2015) 89–100.
- W. Shen, X. Chen, M.N. Pons, J.P. Corriou, Model predictive
control for wastewater treatment process with feedforward
compensation, Chem. Eng. J., 155 (2009) 161–174.
- N. Boruah, B.K. Roy, Event triggered non-linear model
predictive control for a wastewater treatment plant, J. Water
Process Eng., 32 (2019) 100887, doi: 10.1016/j.jwpe.2019.100887.
- S, Du, Q. Zhang, H. Han, H. Sun, J. Qiao, Event-triggered
model predictive control of wastewater treatment plants,
J. Water Process Eng., 47 (2022) 102765, doi: 10.1016/j.jwpe.2022.102765.
- H. Han, S. Fu, H. Sun, C. Qin, J. Qiao, Modeling and control
of wastewater treatment process with time delay based on
event-triggered recursive least squares, Eng. Appl. Artif. Intell.,
122 (2023) 106052, doi: 10.1016/j.engappai.2023.106052.
- H. Han, J. Qiao, Non-linear model-predictive control for
industrial processes: an application to wastewater treatment
process, IEEE Trans. Ind. Electron., 61 (2013) 1970–1982.
- H. Han, H. Qian, J. Qiao, Non-linear multiobjective modelpredictive
control scheme for wastewater treatment process,
J. Process Control, 24 (2014) 47–59.
- H. Han, Z. Liu, Y. Hou, J. Qiao, Data-driven multiobjective
predictive control for wastewater treatment process,
IEEE Trans. Ind. Electron., 16 (2019) 2767–2775.
- H. Han, S. Fu, H. Sun, J. Qiao, Hierarchical non-linear model
predictive control with multi-time-scale for wastewater
treatment process, J. Process Control, 108 (2021) 125–135.
- P.B. Cox, R. Tóth, Linear parameter-varying subspace
identification: a unified framework, Automatica, 123 (2021)
109296, doi: 10.1016/j.automatica.2020.109296.
- M. Jalanko, Y. Sanchez, V. Mahalec, P. Mhaskar, Adaptive system
identification of industrial ethylene splitter: a comparison
of subspace identification and artificial neural networks,
Comput. Chem. Eng., 147 (2021) 107240, doi: 10.1016/j.compchemeng.2021.107240.
- E.P. Reynders, Uncertainty quantification in data-driven
stochastic subspace identification, Mech. Syst. Signal Process.,
151 (2021) 107338, doi: 10.1016/j.ymssp.2020.107338.
- S. Qin, An overview of subspace identification, Comput.
Chem. Eng., 30 (2006) 1502–1513.
- P. Zhou, S. Zhang, P. Dai, Recursive learning-based bilinear
subspace identification for online modeling and predictive
control of a complicated industrial process, IEEE Access,
8 (2020) 62531–62541.
- V. Vajpayee, S. Mukhopadhyay, A.P. Tiwari, Data-driven
subspace predictive control of a nuclear reactor, IEEE Trans.
Nucl. Sci., 65 (2017) 666–679.
- Al. Hasnain, F. Sahami, S. Kamalasadan, An online wide-area
direct coordinated control architecture for power grid transient
stability enhancement based on subspace identification,
IEEE Trans. Ind. Appl., 57 (2021) 2896–2907.
- Q. Chen, H. Sheng, T. Zhang, A novel direct performance
adaptive control of aero-engine
using subspace-based
improved model predictive control, Aerosp. Sci. Technol.,
128 (2022) 107760, doi: 10.1016/j.ast.2022.107760.
- X. Luo, Y. Song, Data-driven predictive control of Hammerstein–
Wiener systems based on subspace identification, Inf. Sci.,
422 (2018) 447–461.
- Z. Li, X. Yuan, Y. Wang, C. Xie, Subspace predictive control
with the data-driven event-triggered law for linear timeinvariant
systems, J. Franklin Inst., 356 (2019) 8167–8181.
- M. Ahmadipour, S.R. Seydnejad, M. Barkhordari-Yazdi,
Subspace-based deterministic identification of MIMO linear
state-delayed systems, Circuits Syst. Signal Process., 39 (2020)
4067–4093.
- P. Zhou, H. Song, H. Wang, T. Chai, Data-driven non-linear
subspace modeling for prediction and control of molten iron
quality indices in blast furnace ironmaking, IEEE Trans.
Control Syst. Technol., 25 (2016) 1761–1774.
- N. Patel, J. Nease, S. Aumi, C. Ewaschuk, J. Luo, P. Mhaskar,
Integrating data-driven modeling with first-principles
knowledge, Ind. Eng. Chem. Res., 59 (2020) 5103–5113.
- N. Patel, B. Corbett, P. Mhaskar, Model predictive control
using subspace model identification, Comput. Chem. Eng.,
149 (2021) 107276, doi: 10.1016/j.compchemeng.2021.107276.
- D. Ghosh, E. Hermonat, P. Mhaskar, S. Snowling, R. Goel,
Hybrid modeling approach integrating first-principles
models with subspace identification, Ind. Eng. Chem. Res.,
58 (2019) 13533–13543.
- H. Zhou, J. Qiao, Multiobjective optimal control for
wastewater treatment process using adaptive MOEA/D,
Appl. Intell., 49 (2019) 1098–1126.
- R. Yang, D. Wang, J. Qiao, Policy gradient adaptive critic design
with dynamic prioritized experience replay for wastewater
treatment process control, IEEE Trans. Ind. Inf., 18 (2021)
3150–3158.
- H. Han, H. Liu, J. Li, J. Qiao, Cooperative fuzzy-neural control
for wastewater treatment process, IEEE Trans. Ind. Inf.,
17 (2020) 5971–5981.