References

  1. M. Rincón Joya, J. Barba Ortega, J.O.D. Malafatti, E.C. Paris, Evaluation of photocatalytic activity in water pollutants and cytotoxic response of α-Fe2O3 nanoparticles, ACS Omega, 4 (2019) 17477–17486.
  2. A.M. Raba-Páez, J.O.D. Malafatti, C.A. Parra-Vargas, E.C. Paris, M. Rincón-Joya, Structural evolution, optical properties, and photocatalytic performance of copper and tungsten heterostructure materials, Mater. Today Commun., 26 (2021) 101886, doi: 10.1016/j.mtcomm.2020.101886.
  3. S. Agarwal, S. Kumar, H. Agrawal, M.G. Moinuddin, M. Kumar, S.K. Sharma, K. Awasthi, An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures, Sens. Actuators, B, 346 (2021) 130510, doi: 10.1016/j.snb.2021.130510.
  4. T. Tian, L. Zheng, M. Podlogar, H. Zeng, S. Bernik, K. Xu, X. Ruan, X. Shi, G. Li, Novel ultrahigh-performance ZnO-based varistor ceramics, ACS Appl. Mater. Interfaces, 13 (2021) 35924–35929.
  5. S. da C. Brito, J.O.D. Malafatti, F.E. Arab, J.D. Bresolin, E.C. Paris, C.W.O. de Souza, M.D. Ferreira, One-pot synthesis of CuO, ZnO, and Ag nanoparticles: structural, morphological, and bactericidal evaluation, Inorg. Nano-Metal Chem., 53 (2023) 490–500.
  6. L.G.S. Peres, J.O.D. Malafatti, B. Bernardi, L.H.C. Mattoso, E.C. Paris, Biodegradable starch sachets reinforced with montmorillonite for packing ZnO nanoparticles: solubility and Zn2+ ions release, J. Polym. Environ., 31 (2023) 2388–2398.
  7. C. El Bekkali, H. Bouyarmane, M. El Karbane, S. Masse, A. Saoiabi, T. Coradin, A. Laghzizil, Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics, Colloids Surf., A, 539 (2018) 364–370.
  8. P. Pascariu, L. Olaru, A.L. Matricala, N. Olaru, Photocatalytic activity of ZnO nanostructures grown on electrospun CAB ultrafine fibers, Appl. Surf. Sci., 455 (2018) 61–69.
  9. M. Sharma, A. Kumar, R.K. Gautam, M. Belwal, Synthesis and characterization of ZnO-CeO₂ nanocomposite with enhanced UV-light-driven photocatalytic dye degradation of Rhodamine-B, J. Nanosci. Nanotechnol., 18 (2017) 3532–3535.
  10. A.J. Moreira, J.O.D. Malafatti, T.R. Giraldi, E.C. Paris, E.C. Pereira, V.R. de Mendonça, V.R. Mastelaro, G.P.G. Freschi, Prozac® photodegradation mediated by Mn-doped TiO2 nanoparticles: evaluation of by-products and mechanisms proposal, J. Environ. Chem. Eng., 8 (2020) 104543, doi: 10.1016/j.jece.2020.104543.
  11. E.C. Paris, J.O.D. Malafatti, C.R. Sciena, L.F. Neves Junior, A. Zenatti, M.T. Escote, A.J. Moreira, G.P.G. Freschi,
    Nb2O5 nanoparticles decorated with magnetic ferrites for wastewater photocatalytic remediation, Environ. Sci. Pollut. Res., 28 (2021) 23731–23741.
  12. I.M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou, M.C. Bernard, P. Falaras, Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation, J. Photochem. Photobiol., A, 149 (2002) 237–245.
  13. S. Ayyaru, T.T.L. Dinh, Y.-H. Ahn, Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle, Chemosphere, 241 (2020) 125068, doi: 10.1016/j.chemosphere.2019.125068.
  14. F. Gallino, C. Di Valentin, G. Pacchioni, M. Chiesa, E. Giamello, Nitrogen impurity states in polycrystalline ZnO. A combined EPR and theoretical study, J. Mater. Chem., 20 (2010) 689–697.
  15. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.
  16. E.C. Paris, J.O.D. Malafatti, A.J. Moreira, L.C. Santos, C.R. Sciena, A. Zenatti, M.T. Escote, V.R. Mastelaro, M.R. Joya, CuO nanoparticles decorated on hydroxyapatite/ferrite magnetic support: photocatalysis, cytotoxicity, and antimicrobial response, Environ. Sci. Pollut. Res., 29 (2022) 41505–41519.
  17. A.M. Raba-Páez, J.O.D. Malafatti, C.A. Parra-Vargas, E.C. Paris, M. Rincón-Joya, Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO, PLoS One, 15 (2020) 1–16.
  18. P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Surface and photocatalytic properties of ZnO thin film prepared by sol–gel method, Thin Solid Films, 520 (2012) 5561–5567.
  19. T. Wanotayan, J. Panpranot, J. Qin, Y. Boonyongmaneerat, Microstructures and photocatalytic properties of ZnO films fabricated by Zn electrodeposition and heat treatment, Mater. Sci. Semicond. Process., 74 (2018) 232–237.
  20. V.K. Jayaraman, A. Hernández-Gordillo, M. Bizarro, Importance of precursor type in fabricating ZnO thin films for photocatalytic applications, Mater. Sci. Semicond. Process., 75 (2018) 36–42.
  21. B. Pal, M. Sharon, Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process, Mater. Chem. Phys., 76 (2002) 82–87.
  22. R. Kumar, M.S. Abdel-Wahab, M.A. Barakat, J. Rashid, N. Salah, A.A. Al-Ghamdi, Role of N doping on the structural, optical and photocatalytic properties of the silver deposited ZnO thin films, J. Taiwan Inst. Chem. Eng., 69 (2016) 131–138.
  23. O. Sacco, V. Vaiano, M. Matarangolo, ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis, Sep. Purif. Technol., 193 (2018) 303–310.
  24. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films, Surf. Interfaces, 16 (2019) 120–126.
  25. J.K. Saha, R.N. Bukke, N.N. Mude, J. Jang, Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors, Sci. Rep., 10 (2020) 1–11.
  26. P.C. Lee, Y.L. Hsiao, J. Dutta, R.C. Wang, S.W. Tseng, C.P. Liu, Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors, Nano Energy, 82 (2021) 105702, doi: 10.1016/j.nanoen.2020.105702.
  27. J. Yang, B. Wei, X. Li, J. Wang, H. Zhai, X. Li, Y. Sui, Y. Liu, J. Wang, J. Lang, Q. Zhang, Synthesis of ZnO films in different solvents and their photocatalytic activities, Cryst. Res. Technol., 50 (2015) 840–845.
  28. Y. Mao, Y. Li, Y. Zou, X. Shen, L. Zhu, G. Liao, Solvothermal synthesis and photocatalytic properties of ZnO micro/nanostructures, Ceram. Int., 45 (2019) 1724–1729.
  29. J.A. Oliveira, A.E. Nogueira, M.C.P. Gonçalves, E.C. Paris, C. Ribeiro, G.Y. Poirier, T.R. Giraldi, Photoactivity of
    N-doped ZnO nanoparticles in oxidative and reductive reactions, Appl. Surf. Sci., 433 (2018) 879–886.
  30. J. Huang, C. Xia, L. Cao, X. Zeng, Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology, Mater. Sci. Eng., B, 150 (2008) 187–193.
  31. U. Choppali, E. Kougianos, S.P. Mohanty, B.P. Gorman, Influence of annealing on polymeric precursor derived ZnO thin films on sapphire, Thin Solid Films, 545 (2013) 466–470.
  32. J. Wojnarowicz, T. Chudoba, S. Gierlotka, K. Sobczak, W. Lojkowski, Size control of cobalt-doped zno nanoparticles obtained in microwave solvothermal synthesis, Crystals, 8 (2018) 1–18.
  33. C. Sandoval, A.D. Kim, Deriving Kubelka–Munk theory from radiative transport, J. Opt. Soc. Am. A, 31 (2014) 628, doi: 10.1364/josaa.31.000628.
  34. O. Schevciw, W.B. White, The optical absorption edge of rare earth sesquisulfides and alkaline earth – rare earth sulfides, Mater. Res. Bull., 18 (1983) 1059–1068.
  35. A. Dhanalakshmi, A. Palanimurugan, B. Natarajan, Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles, Mater. Sci. Eng., C, 90 (2018) 95–103.
  36. B. Amrani, S. Hamzaoui, Characterization of ZnO films prepared by reactive sputtering at different oxygen pressures, Catal. Today, 89 (2004) 331–335.
  37. K.C. Sanal, R.R. Trujillo, P.K. Nair, M.T.S. Nair, Room Temperature Deposition of Zinc Oxide Thin Films by RF-Magnetron Sputtering for Application in Solar Cells, SPIE Optics + Photonics for Sustainable Energy, 2016. doi: 10.1117/12.2238434.
  38. L. Znaidi, G.J.A.A. Soler Illia, R. Le Guennic, C. Sanchez, A. Kanaev, Elaboration of ZnO thin films with preferential orientation by a soft chemistry route, J. Sol-Gel Sci. Technol., 26 (2003) 817–821.
  39. J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16 (2014) 20382–20386.
  40. M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method, Superlattices Microstruct., 85 (2015) 7–23.
  41. A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, M. Miki-Yoshida, Optical bandgap estimation of ZnO nanorods, Mater. Res., 19 (2016) 33–38.
  42. A.K. Jazmati, B. Abdallah, Optical and structural study of ZnO thin films deposited by RF magnetron sputtering at different thicknesses: a comparison with single crystal, Mater. Res., 21 (2018) 20170821, doi: 10.1590/1980-5373-MR-2017-0821.
  43. J.O.D. Malafatti, A.J. Moreira, C.R. Sciena, T.E.M. Silva, G.P.G. Freschic, E.C. Pereira, E.C. Paris, Prozac® removal promoted by HAP:Nb2O5 nanoparticles system: by-products, mechanism, and cytotoxicity assessment, J. Environ. Chem. Eng., 9 (2021) 104820, doi: 10.1016/j.jece.2020.104820.
  44. H. Fu, J. Lin, L. Zhang, Y. Zhu, Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process, Appl. Catal., A, 306 (2006) 58–67.
  45. X.C. Song, Y.F. Zheng, R. Ma, Y.Y. Zhang, H.Y. Yin, Photocatalytic activities of Mo-doped Bi2WO6
    three-dimensional hierarchical microspheres, J. Hazard. Mater., 192 (2011) 186–191.
  46. Y. Tong, J. Cheng, Y. Liu, G.G. Siu, Enhanced photocatalytic performance of ZnO hierarchical nanostructures synthesized via a two-temperature aqueous solution route, Scr. Mater., 60 (2009) 1093–1096.
  47. X. Xu, X. Duan, Z. Yi, Z. Zhou, X. Fan, Y. Wang, Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light, Catal. Commun., 12 (2010) 169–172.
  48. V.R. De Mendonça, C. Ribeiro, Influence of TiO2 morphological parameters in dye photodegradation: a comparative study in peroxo-based synthesis, Appl. Catal., B, 105 (2011) 298–305.