References

  1. F. Khelifi, A. Melki, Y. Hamed, P. Adamo, A.G. Caporale, Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia, Environ. Geochem. Health, 42 (2020) 4125–4139.
  2. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  3. L. Yang, Z. Wei, W. Zhong, J. Cui, W. Wei, Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution, Colloids Surf., A, 490 (2016) 9–21.
  4. B. Alyüz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ionexchange resins, J. Hazard. Mater., 167 (2009) 482–488.
  5. H.-J. Choi, S.-W. Yu, Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution, Korean J. Chem. Eng., 35 (2018) 2198–2206.
  6. C.S.L. dos Santos, M.H. Miranda Reis, V.L. Cardoso, M.M. de Resende, Electrodialysis for removal of chromium(VI) from effluent: analysis of concentrated solution saturation, J. Environ. Chem. Eng., 7 (2019) 103380, doi: 10.1016/j.jece.2019.103380.
  7. S.-Y. Tang, Y.-R. Qiu, Removal of copper(II) ions from aqueous solutions by complexation–ultrafiltration using rotating disk membrane and the shear stability of PAA–Cu complex, Chem. Eng. Res. Des., 136 (2018) 712–720.
  8. Y. Li, L. Yang, Z. Xu, Q. Sun, Separation and recovery of heavy metals from wastewater using synergistic solvent extraction, IOP Conf. Ser.: Mater. Sci. Eng., 167 (2017) 012005,
    doi: 10.1088/1757-899X/167/1/012005.
  9. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol., 96 (2005) 1518–1521.
  10. A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays, Water Air Soil Pollut., 223 (2012) 1191–1204.
  11. M. Irannajad, H. Kamran Haghighi, Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review, Environ. Processes, 8 (2021) 7–35.
  12. B.-S. Liaw, T.-T. Chang, H.-K. Chang, W.-K. Liu, P.-Y. Chen, Fish scale-extracted hydroxyapatite/chitosan composite scaffolds fabricated by freeze casting—an innovative strategy for water treatment, J. Hazard. Mater., 382 (2020) 121082, doi: 10.1016/j.jhazmat.2019.121082.
  13. M. Wang, K. Zhang, M. Wu, Q. Wu, J. Liu, J. Yang, J. Zhang, Unexpectedly high adsorption capacity of esterified hydroxyapatite for heavy metal removal, Langmuir, 35 (2019) 16111–16119.
  14. R. Bazargan-Lari, M.E. Bahrololoom, A. Nemati, Z. Salehi, Adsorption of Cu(II) ions from industrial wastewater on natural hydroxyapatite extracted from bone ash, J. Food Agric. Environ., 9 (2011) 652–657.
  15. A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and characterization of natural nano-hydroxyapatite derived from Turkey femurbone waste, Appl. Biochem. Biotechnol., 189 (2019) 919–932.
  16. A. Pooladi, R. Bazargan-Lari, Simultaneous removal of copper and zinc ions by chitosan/hydroxyapatite/nano-magnetite composite, J. Mater. Res. Technol., 9 (2020) 14841–14852.
  17. S.M.H. Dabiri, A.A. Rezaie, M. Moghimi, H. Rezaie, Extraction of hydroxyapatite from fish bones and its application in nickel adsorption, BioNanoScience, 8 (2018) 823–834.
  18. N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, T.C. Lee, Syntheses of hydroxyapatite from natural sources, Heliyon, 5 (2019) e01588, doi: 10.1016/j.heliyon.2019.e01588.
  19. M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, R. Hussain, Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci., 49 (2014) 1461–1475.
  20. D. Milovac, T.C. Gamboa-Martínez, M. Ivankovic, G. Gallego Ferrer, H. Ivankovic, PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in-vitro cell culture studies, Mater. Sci. Eng., C, 42 (2014) 264–272.
  21. T. Varadavenkatesan, R. Vinayagam, S. Pai, B. Kathirvel, A. Pugazhendhi, R. Selvaraj, Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings, Prog. Org. Coat., 151 (2021) 106056, doi: 10.1016/j.porgcoat.2020.106056.
  22. P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, M. Du, Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts, Mater. Sci. Eng., C, 90 (2018) 706–712.
  23. S. Campisi, C. Castellano, A. Gervasini, Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper(II) and lead(II) ions, New J. Chem., 42 (2018) 4520–4530.
  24. D.M. Imam, S.I. Moussa, M.F. Attallah, Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material, J. Radioanal. Nucl. Chem., 319 (2019) 997–1012.
  25. T. Kraiem, A.B. Hassen-Trabelsi, S. Naoui, H. Belayouni, M. Jeguirim, Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process, Fuel Process. Technol., 138 (2015) 404–412.
  26. FAO: United States Food and Agriculture Organization, Fishery and Aquaculture Country Profiles, Tunisia, 2021. Available at http://www.fao.org/fishery/facp/TUN/fr
  27. I. Smičiklas, A. Onjia, S. Raičević, Experimental design approach in the synthesis of hydroxyapatite by neutralization method, Sep. Purif. Technol., 44 (2005) 97–102.
  28. L. Yang, W. Zhong, J. Cui, Z. Wei, W. Wei, Enhanced removal of Cu(II) ions from aqueous solution by poorly crystalline hydroxyapatite nanoparticles, J. Dispersion Sci. Technol., 37 (2016) 956–968.
  29. Z. Alam, S.A. Muyibi, J. Toramae, Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19 (2007) 674–677.
  30. H. Arslanoğlu, R. Orhan, M.D. Turan, Application of response surface methodology for the optimization of copper removal from aqueous solution by activated carbon prepared using waste polyurethane, Anal. Lett., 53 (2020) 1343–1365.
  31. M. Ghaedi, H.Z. Khafri, A. Asfaram, A. Goudarzi, Response surface methodology approach for optimization of adsorption of Janus Green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: kinetic and isotherm study, Spectrochim. Acta, Part A, 152 (2016) 233–240.
  32. B. Kizilkaya, A.A. Tekinay, Y. Dilgin, Adsorption and removal of Cu(II) ions from aqueous solution using pretreated fish bones, Desalination, 264 (2010) 37–47.
  33. Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J.-H. Deng, M. Yan, Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 487–494.
  34. Y. Chen, M. Li, Y. Li, Y. Liu, Y. Chen, H. Li, L. Li, F. Xu, H. Jiang, L. Chen, Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: adsorption behavior and mechanisms, Bioresour. Technol., 321 (2021) 124413, doi: 10.1016/j.biortech.2020.124413.
  35. A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani, Lead and cadmium removal by adsorption process using hydroxyapatite porous materials, Water Pract. Technol., 15 (2020) 130–141.
  36. D.-X. Guan, C. Ren, J. Wang, Y. Zhu, Z. Zhu, W. Li, Characterization of lead uptake by nano-sized hydroxyapatite: a molecular scale perspective, ACS Earth Space Chem., 2 (2018) 599–607.
  37. H.S.M. Abd-Rabboh, K.F. Fawy, N.S. Awwad, Removal of copper(II) from aqueous samples using natural activated hydroxyapatite sorbent produced from camel bones, Desal. Water Treat., 164 (2019) 300–309.
  38. F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr, R.S. Varma, Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering, Mater. Sci. Eng., B, 264 (2021) 114950, doi: 10.1016/j.mseb.2020.114950.
  39. A. Khawar, Z. Aslam, A. Zahir, I. Akbar, A. Abbas, Synthesis of Femur extracted hydroxyapatite reinforced nanocomposite and its application for Pb(II) ions abatement from aqueous phase, Int. J. Biol. Macromol., 122 (2019) 667–676.
  40. S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien, S. Chanthai, Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution, Chem. Eng. J., 215–216 (2013) 522–532.
  41. A. Rathnayake, O. Hettithanthri, A.U. Rajapaksha, M. Vithanage, Preparation and Characterization of Dendro Biochar-Hydroxyapatite Composite: A Potential Material for Defluoridation, 2021 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2021, pp. 160–163.
  42. K.-W. Jung, S.Y. Lee, J.-W. Choi, Y.J. Lee, A facile onepot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper(II) from aqueous media, Chem. Eng. J., 369 (2019) 529–541.
  43. H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear and nonlinear equations of pseudo-first-order and pseudosecond- order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018) 244–254.
  44. H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb, E. Morallon, R. Brahmi, Removal of o-cresol from aqueous solution using Algerian Na-clay as adsorbent, Desal. Water Treat., 57 (2016) 20511–20519.
  45. Z. Zhang, X. Wang, H. Wang, J. Zhao, Removal of Pb(II) from aqueous solution using hydroxyapatite/calcium silicate hydrate (HAP/C-S-H) composite adsorbent prepared by a phosphate recovery process, Chem. Eng. J., 344 (2018) 53–61.
  46. L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide, RSC Adv., 5 (2015) 9759–9770.
  47. S. Swamiappan, S. Ganesan, V. Sekar, S. Devaraj, A. Subramanian, V.K. Ponnusamy, P. Kathirvel, Effective removal of cationic methylene blue dye using nano‐hydroxyapatite synthesized from fish scale biowaste, Int. J. Appl. Ceram. Technol., 18 (2021) 902–912.
  48. R. Bazargan-Lari, M.E. Bahrololoom, A. Nemati, Sorption behavior of Zn(II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial wastewater, J. Food Agric. Environ., 9 (2011) 892–897.
  49. Y. Liu, G. Zeng, L. Tang, Y. Cai, Y. Pang, Y. Zhang, G. Yang, Y. Zhou, X. He, Y. He, Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon, J. Colloid Interface Sci., 448 (2015) 451–459.
  50. A. Babkin, I. Burakova, A. Burakov, D. Kurnosov, E. Galunin, A. Tkachev, I. Ali, Adsorption of Cu2+, Zn2+ and Pb2+ ions on a novel graphene-containing nanocomposite: an isotherm study, IOP Conf. Ser.: Mater. Sci. Eng., 693 (2019) 012045, doi: 10.1088/1757-899X/693/1/012045.
  51. A. Phasuk, S. Srisantitham, T. Tuntulani, W. Anutrasakda, Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics, Adsorption, 24 (2018) 157–167.
  52. H. Hernández-Cocoletzi, R.A. Salinas, E. Águila-Almanza, E. Rubio-Rosas, W.S. Chai, K.W. Chew,
    C. Mariscal-Hernández, Pau Loke Show d, Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent, Environ. Technol. Innovation, 20 (2020) 101109, doi: 10.1016/j.eti.2020.101109.
  53. A. Bambaeero, R. Bazargan-Lari, Simultaneous removal of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite, Chin. J. Chem. Eng., 33 (2021) 221–230.
  54. Ç. Sarici-Özdemir, Y. Önal, Error analysis studies of dye adsorption onto activated carbon from aqueous solutions, Part. Sci. Technol., 32 (2014) 20–27.
  55. S. Meski, N. Tazibt, H. Khireddine, S. Ziani, W. Biba, S. Yala, D. Sidane, F. Boudjouan, N. Moussaoui, Synthesis of hydroxyapatite from mussel shells for effective adsorption of aqueous Cd(II), Water Sci. Technol., 80 (2019) 1226–1237.
  56. Y. Si, J. Huo, Y. Hengbo, A. Wang, Adsorption kinetics, isotherms, and thermodynamics of Cr(III), Pb(II), and Cu(II) on porous hydroxyapatite nanoparticles, J. Nanosci. Nanotechnol., 18 (2018) 3484–3491.
  57. M. Lu, Y. Zhang, X. Guan, X. Xu, T. Gao, Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose, Trans. Nonferrous Met. Soc. China, 24 (2014) 1912–1917.
  58. S. Kondapalli, K. Mohanty, Influence of temperature on equilibrium, kinetic and thermodynamic parameters of biosorption of Cr(VI) onto fish scales as suitable biosorbent, J. Water Resour. Prot., 3 (2011) 429–439.
  59. G. Louhıchı, L. Bousselmı, A. Ghrabı, I. Khounı, Process optimization via response surface methodology in the physicochemical treatment of vegetable oil refinery wastewater, Environ. Sci. Pollut. Res., 26 (2019) 18993–19011.
  60. M. Rastgordani, J. Zolgharnein, Simultaneous determination and optimization of Titan Yellow and Reactive Blue 4 dyes removal using chitosan@hydroxyapatite nanocomposites, J. Polym. Environ., 29 (2021) 1789–1807.
  61. M. Mäkelä, Experimental design and response surface methodology in energy applications: a tutorial review, Energy Convers. Manage., 151 (2017) 630–640.
  62. A. Akhtar, K. Akram, Z. Aslam, I. Ihsanullah, N. Baig, M.M. Bello, Photocatalytic degradation of p-nitrophenol in wastewater by heterogeneous cobalt supported ZnO nanoparticles: modeling and optimization using response surface methodology, Environ. Prog. Sustainable Energy, 42 (2023) e13984, doi: 10.1002/ep.13984.
  63. A. Javid, A. Roudbari, N. Yousefi, M.A. Fard, B. Barkdoll, S.S. Talebi, S. Nazemi, M. Ghanbarian, S.K. Ghadiri, Modeling of chromium(VI) removal from aqueous solution using modified green-graphene: RSM-CCD approach, optimization, isotherm, and kinetic studies, J. Environ. Health Sci. Eng., 18 (2020) 515–529.
  64. L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J., 165 (2010) 827–834.
  65. J. Lu, F. Zhang, Novel Fe–Mn oxide/zeolite composite material for rapid removal of toxic copper ions from aqueous solutions, J. Cleaner Prod., 397 (2023) 136496, doi: 10.1016/j.jclepro.2023.136496.
  66. R. Foroutan, S.J. Peighambardoust, R. Mohammadi, S.H. Peighambardoust, B. Ramavandi, Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: treatment of groundwater samples, Chemosphere, 296 (2022) 133978, doi: 10.1016/j.chemosphere.2022.133978.
  67. R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng., 45 (2014) 1642–1648.
  68. S. Meseldzija, J. Petrovic, A. Onjia, T. Volkov-Husovic, A. Nesic, N. Vukelic, Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater, J. Ind. Eng. Chem., 75 (2019) 246–252.
  69. H. Huang, Q. Yang, C. Huang, L. Zhang, Facile and low-cost fabrication of composite hydrogels to improve adsorption of copper ions, Environ. Technol. Innovation, 27 (2022) 102427, doi: 10.1016/j.eti.2022.102427.