References
- F. Khelifi, A. Melki, Y. Hamed, P. Adamo, A.G. Caporale,
Environmental and human health risk assessment of
potentially toxic elements in soil, sediments, and ore-processing
wastes from a mining area of southwestern Tunisia, Environ.
Geochem. Health, 42 (2020) 4125–4139.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- L. Yang, Z. Wei, W. Zhong, J. Cui, W. Wei, Modifying
hydroxyapatite nanoparticles with humic acid for highly
efficient removal of Cu(II) from aqueous solution, Colloids
Surf., A, 490 (2016) 9–21.
- B. Alyüz, S. Veli, Kinetics and equilibrium studies for the
removal of nickel and zinc from aqueous solutions by ionexchange
resins, J. Hazard. Mater., 167 (2009) 482–488.
- H.-J. Choi, S.-W. Yu, Application of novel hybrid bioadsorbent,
tannin/chitosan/sericite, for the removal of Pb(II) toxic
ion from aqueous solution, Korean J. Chem. Eng., 35 (2018)
2198–2206.
- C.S.L. dos Santos, M.H. Miranda Reis, V.L. Cardoso, M.M. de
Resende, Electrodialysis for removal of chromium(VI) from
effluent: analysis of concentrated solution saturation, J. Environ.
Chem. Eng., 7 (2019) 103380, doi: 10.1016/j.jece.2019.103380.
- S.-Y. Tang, Y.-R. Qiu, Removal of copper(II) ions from aqueous
solutions by complexation–ultrafiltration using rotating
disk membrane and the shear stability of PAA–Cu complex,
Chem. Eng. Res. Des., 136 (2018) 712–720.
- Y. Li, L. Yang, Z. Xu, Q. Sun, Separation and recovery of
heavy metals from wastewater using synergistic solvent
extraction, IOP Conf. Ser.: Mater. Sci. Eng., 167 (2017) 012005,
doi: 10.1088/1757-899X/167/1/012005.
- M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of
heavy metal ions from aqueous solutions by activated carbon
prepared from apricot stone, Bioresour. Technol., 96 (2005)
1518–1521.
- A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Competitive
removal of heavy metals from aqueous solutions by
montmorillonitic and calcareous clays, Water Air Soil Pollut.,
223 (2012) 1191–1204.
- M. Irannajad, H. Kamran Haghighi, Removal of heavy metals
from polluted solutions by zeolitic adsorbents: a review,
Environ. Processes, 8 (2021) 7–35.
- B.-S. Liaw, T.-T. Chang, H.-K. Chang, W.-K. Liu, P.-Y. Chen, Fish
scale-extracted hydroxyapatite/chitosan composite scaffolds
fabricated by freeze casting—an innovative strategy for water
treatment, J. Hazard. Mater., 382 (2020) 121082, doi: 10.1016/j.jhazmat.2019.121082.
- M. Wang, K. Zhang, M. Wu, Q. Wu, J. Liu, J. Yang, J. Zhang,
Unexpectedly high adsorption capacity of esterified
hydroxyapatite for heavy metal removal, Langmuir, 35 (2019)
16111–16119.
- R. Bazargan-Lari, M.E. Bahrololoom, A. Nemati, Z. Salehi,
Adsorption of Cu(II) ions from industrial wastewater on
natural hydroxyapatite extracted from bone ash, J. Food Agric.
Environ., 9 (2011) 652–657.
- A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari,
A. Rouhani, N. Parvin, M. Irani, Synthesis and characterization
of natural nano-hydroxyapatite derived from Turkey femurbone
waste, Appl. Biochem. Biotechnol., 189 (2019) 919–932.
- A. Pooladi, R. Bazargan-Lari, Simultaneous removal of copper
and zinc ions by chitosan/hydroxyapatite/nano-magnetite
composite, J. Mater. Res. Technol., 9 (2020) 14841–14852.
- S.M.H. Dabiri, A.A. Rezaie, M. Moghimi, H. Rezaie, Extraction
of hydroxyapatite from fish bones and its application in
nickel adsorption, BioNanoScience, 8 (2018) 823–834.
- N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris,
T.C. Lee, Syntheses of hydroxyapatite from natural sources,
Heliyon, 5 (2019) e01588, doi: 10.1016/j.heliyon.2019.e01588.
- M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, R. Hussain,
Extracting hydroxyapatite and its precursors from natural
resources, J. Mater. Sci., 49 (2014) 1461–1475.
- D. Milovac, T.C. Gamboa-Martínez, M. Ivankovic, G. Gallego
Ferrer, H. Ivankovic, PCL-coated hydroxyapatite scaffold
derived from cuttlefish bone: in-vitro cell culture studies,
Mater. Sci. Eng., C, 42 (2014) 264–272.
- T. Varadavenkatesan, R. Vinayagam, S. Pai, B. Kathirvel,
A. Pugazhendhi, R. Selvaraj, Synthesis, biological and
environmental applications of hydroxyapatite and its
composites with organic and inorganic coatings, Prog. Org.
Coat., 151 (2021) 106056, doi: 10.1016/j.porgcoat.2020.106056.
- P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, M. Du, Characterization
of natural hydroxyapatite originated from fish bone and its
biocompatibility with osteoblasts, Mater. Sci. Eng., C, 90 (2018)
706–712.
- S. Campisi, C. Castellano, A. Gervasini, Tailoring the structural
and morphological properties of hydroxyapatite materials
to enhance the capture efficiency towards copper(II) and
lead(II) ions, New J. Chem., 42 (2018) 4520–4530.
- D.M. Imam, S.I. Moussa, M.F. Attallah, Sorption behavior of
some radionuclides using prepared adsorbent of hydroxyapatite
from biomass waste material, J. Radioanal. Nucl. Chem.,
319 (2019) 997–1012.
- T. Kraiem, A.B. Hassen-Trabelsi, S. Naoui, H. Belayouni,
M. Jeguirim, Characterization of the liquid products obtained
from Tunisian waste fish fats using the pyrolysis process,
Fuel Process. Technol., 138 (2015) 404–412.
- FAO: United States Food and Agriculture Organization,
Fishery and Aquaculture Country Profiles, Tunisia, 2021.
Available at http://www.fao.org/fishery/facp/TUN/fr
- I. Smičiklas, A. Onjia, S. Raičević, Experimental design
approach in the synthesis of hydroxyapatite by neutralization
method, Sep. Purif. Technol., 44 (2005) 97–102.
- L. Yang, W. Zhong, J. Cui, Z. Wei, W. Wei, Enhanced removal
of Cu(II) ions from aqueous solution by poorly crystalline
hydroxyapatite nanoparticles, J. Dispersion Sci. Technol.,
37 (2016) 956–968.
- Z. Alam, S.A. Muyibi, J. Toramae, Statistical optimization
of adsorption processes for removal of 2,4-dichlorophenol
by activated carbon derived from oil palm empty fruit
bunches, J. Environ. Sci., 19 (2007) 674–677.
- H. Arslanoğlu, R. Orhan, M.D. Turan, Application of response
surface methodology for the optimization of copper removal
from aqueous solution by activated carbon prepared using
waste polyurethane, Anal. Lett., 53 (2020) 1343–1365.
- M. Ghaedi, H.Z. Khafri, A. Asfaram, A. Goudarzi, Response
surface methodology approach for optimization of adsorption
of Janus Green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: kinetic and isotherm study, Spectrochim. Acta, Part A,
152 (2016) 233–240.
- B. Kizilkaya, A.A. Tekinay, Y. Dilgin, Adsorption and removal
of Cu(II) ions from aqueous solution using pretreated fish
bones, Desalination, 264 (2010) 37–47.
- Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang,
C.-G. Niu, J.-H. Deng, M. Yan, Adsorption of Cd(II) and
Zn(II) from aqueous solutions using magnetic hydroxyapatite
nanoparticles as adsorbents, Chem. Eng. J., 162 (2010)
487–494.
- Y. Chen, M. Li, Y. Li, Y. Liu, Y. Chen, H. Li, L. Li, F. Xu, H. Jiang,
L. Chen, Hydroxyapatite modified sludge-based biochar
for the adsorption of Cu2+ and Cd2+: adsorption behavior
and mechanisms, Bioresour. Technol., 321 (2021) 124413,
doi: 10.1016/j.biortech.2020.124413.
- A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb,
A. Deratani, Lead and cadmium removal by adsorption
process using hydroxyapatite porous materials, Water Pract.
Technol., 15 (2020) 130–141.
- D.-X. Guan, C. Ren, J. Wang, Y. Zhu, Z. Zhu, W. Li, Characterization
of lead uptake by nano-sized hydroxyapatite: a
molecular scale perspective, ACS Earth Space Chem., 2 (2018)
599–607.
- H.S.M. Abd-Rabboh, K.F. Fawy, N.S. Awwad, Removal of
copper(II) from aqueous samples using natural activated
hydroxyapatite sorbent produced from camel bones,
Desal. Water Treat., 164 (2019) 300–309.
- F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht,
M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr,
R.S. Varma, Biocompatibility and mechanical properties of
pigeon bone waste extracted natural nano-hydroxyapatite for
bone tissue engineering, Mater. Sci. Eng., B, 264 (2021) 114950,
doi: 10.1016/j.mseb.2020.114950.
- A. Khawar, Z. Aslam, A. Zahir, I. Akbar, A. Abbas, Synthesis
of Femur extracted hydroxyapatite reinforced nanocomposite
and its application for Pb(II) ions abatement from
aqueous phase, Int. J. Biol. Macromol., 122 (2019) 667–676.
- S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien,
S. Chanthai, Nanocrystalline hydroxyapatite from fish scale
waste: preparation, characterization and application for
selenium adsorption in aqueous solution, Chem. Eng. J.,
215–216 (2013) 522–532.
- A. Rathnayake, O. Hettithanthri, A.U. Rajapaksha,
M. Vithanage, Preparation and Characterization of Dendro
Biochar-Hydroxyapatite Composite: A Potential Material
for Defluoridation, 2021 Moratuwa Engineering Research
Conference (MERCon), Moratuwa, Sri Lanka, 2021, pp. 160–163.
- K.-W. Jung, S.Y. Lee, J.-W. Choi, Y.J. Lee, A facile onepot
hydrothermal synthesis of hydroxyapatite/biochar
nanocomposites: adsorption behavior and mechanisms for
the removal of copper(II) from aqueous media, Chem. Eng. J.,
369 (2019) 529–541.
- H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear
and nonlinear equations of pseudo-first-order and pseudosecond-
order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018)
244–254.
- H. Herbache, A. Ramdani, A. Maghni, Z. Taleb, S. Taleb,
E. Morallon, R. Brahmi, Removal of o-cresol from aqueous
solution using Algerian Na-clay as adsorbent, Desal. Water
Treat., 57 (2016) 20511–20519.
- Z. Zhang, X. Wang, H. Wang, J. Zhao, Removal of Pb(II)
from aqueous solution using hydroxyapatite/calcium silicate
hydrate (HAP/C-S-H) composite adsorbent prepared by a
phosphate recovery process, Chem. Eng. J., 344 (2018) 53–61.
- L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, Mechanism
of Pb(II) and methylene blue adsorption onto magnetic
carbonate hydroxyapatite/graphene oxide, RSC Adv., 5 (2015)
9759–9770.
- S. Swamiappan, S. Ganesan, V. Sekar, S. Devaraj, A. Subramanian,
V.K. Ponnusamy, P. Kathirvel, Effective removal of cationic
methylene blue dye using nano‐hydroxyapatite synthesized
from fish scale biowaste, Int. J. Appl. Ceram. Technol., 18 (2021)
902–912.
- R. Bazargan-Lari, M.E. Bahrololoom, A. Nemati, Sorption
behavior of Zn(II) ions by low cost and biological natural
hydroxyapatite/chitosan composite from industrial wastewater,
J. Food Agric. Environ., 9 (2011) 892–897.
- Y. Liu, G. Zeng, L. Tang, Y. Cai, Y. Pang, Y. Zhang, G. Yang,
Y. Zhou, X. He, Y. He, Highly effective adsorption of cationic
and anionic dyes on magnetic Fe/Ni nanoparticles doped
bimodal mesoporous carbon, J. Colloid Interface Sci., 448 (2015)
451–459.
- A. Babkin, I. Burakova, A. Burakov, D. Kurnosov, E. Galunin,
A. Tkachev, I. Ali, Adsorption of Cu2+, Zn2+ and Pb2+ ions on
a novel graphene-containing nanocomposite: an isotherm
study, IOP Conf. Ser.: Mater. Sci. Eng., 693 (2019) 012045,
doi: 10.1088/1757-899X/693/1/012045.
- A. Phasuk, S. Srisantitham, T. Tuntulani, W. Anutrasakda,
Facile synthesis of magnetic hydroxyapatite-supported nickel
oxide nanocomposite and its dye adsorption characteristics,
Adsorption, 24 (2018) 157–167.
- H. Hernández-Cocoletzi, R.A. Salinas, E. Águila-Almanza,
E. Rubio-Rosas, W.S. Chai, K.W. Chew,
C. Mariscal-Hernández,
Pau Loke Show d, Natural hydroxyapatite from fishbone waste
for the rapid adsorption of heavy metals of aqueous effluent,
Environ. Technol. Innovation, 20 (2020) 101109, doi: 10.1016/j.eti.2020.101109.
- A. Bambaeero, R. Bazargan-Lari, Simultaneous removal
of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite, Chin. J. Chem. Eng.,
33 (2021) 221–230.
- Ç. Sarici-Özdemir, Y. Önal, Error analysis studies of dye
adsorption onto activated carbon from aqueous solutions,
Part. Sci. Technol., 32 (2014) 20–27.
- S. Meski, N. Tazibt, H. Khireddine, S. Ziani, W. Biba,
S. Yala, D. Sidane, F. Boudjouan, N. Moussaoui, Synthesis of
hydroxyapatite from mussel shells for effective adsorption
of aqueous Cd(II), Water Sci. Technol., 80 (2019) 1226–1237.
- Y. Si, J. Huo, Y. Hengbo, A. Wang, Adsorption kinetics,
isotherms, and thermodynamics of Cr(III), Pb(II), and
Cu(II) on porous hydroxyapatite nanoparticles, J. Nanosci.
Nanotechnol., 18 (2018) 3484–3491.
- M. Lu, Y. Zhang, X. Guan, X. Xu, T. Gao, Thermodynamics
and kinetics of adsorption for heavy metal ions from aqueous
solutions onto surface amino-bacterial cellulose, Trans.
Nonferrous Met. Soc. China, 24 (2014) 1912–1917.
- S. Kondapalli, K. Mohanty, Influence of temperature on
equilibrium, kinetic and thermodynamic parameters of
biosorption of Cr(VI) onto fish scales as suitable biosorbent,
J. Water Resour. Prot., 3 (2011) 429–439.
- G. Louhıchı, L. Bousselmı, A. Ghrabı, I. Khounı, Process
optimization
via response surface methodology in the physicochemical
treatment of vegetable oil refinery wastewater,
Environ. Sci. Pollut. Res., 26 (2019) 18993–19011.
- M. Rastgordani, J. Zolgharnein, Simultaneous determination
and optimization of Titan Yellow and Reactive Blue 4 dyes
removal using chitosan@hydroxyapatite nanocomposites,
J. Polym. Environ., 29 (2021) 1789–1807.
- M. Mäkelä, Experimental design and response surface
methodology in energy applications: a tutorial review, Energy
Convers. Manage., 151 (2017) 630–640.
- A. Akhtar, K. Akram, Z. Aslam, I. Ihsanullah, N. Baig,
M.M. Bello, Photocatalytic degradation of p-nitrophenol
in wastewater by heterogeneous cobalt supported ZnO
nanoparticles: modeling and optimization using response
surface methodology, Environ. Prog. Sustainable Energy,
42 (2023) e13984, doi: 10.1002/ep.13984.
- A. Javid, A. Roudbari, N. Yousefi, M.A. Fard, B. Barkdoll,
S.S. Talebi, S. Nazemi, M. Ghanbarian, S.K. Ghadiri, Modeling
of chromium(VI) removal from aqueous solution using
modified green-graphene: RSM-CCD approach, optimization,
isotherm, and kinetic studies, J. Environ. Health Sci. Eng.,
18 (2020) 515–529.
- L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous
solution by hydroxyapatite/magnetite composite adsorbent,
Chem. Eng. J., 165 (2010) 827–834.
- J. Lu, F. Zhang, Novel Fe–Mn oxide/zeolite composite
material for rapid removal of toxic copper ions from aqueous
solutions, J. Cleaner Prod., 397 (2023) 136496, doi: 10.1016/j.jclepro.2023.136496.
- R. Foroutan, S.J. Peighambardoust, R. Mohammadi,
S.H. Peighambardoust, B. Ramavandi, Development of new
magnetic adsorbent of walnut shell ash/starch/Fe3O4 for
effective copper ions removal: treatment of groundwater
samples, Chemosphere, 296 (2022) 133978, doi: 10.1016/j.chemosphere.2022.133978.
- R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati,
Removal of Cu(II) ions from aqueous solutions by low-cost
natural hydroxyapatite/chitosan composite: equilibrium,
kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng.,
45 (2014) 1642–1648.
- S. Meseldzija, J. Petrovic, A. Onjia, T. Volkov-Husovic, A. Nesic,
N. Vukelic, Utilization of agro-industrial waste for removal of
copper ions from aqueous solutions and mining-wastewater,
J. Ind. Eng. Chem., 75 (2019) 246–252.
- H. Huang, Q. Yang, C. Huang, L. Zhang, Facile and low-cost
fabrication of composite hydrogels to improve adsorption of
copper ions, Environ. Technol. Innovation, 27 (2022) 102427,
doi: 10.1016/j.eti.2022.102427.