References

  1. A.A. Khan, S.R. Naqvi, I. Ali, M. Arshad, H. AlMohamadi, U. Sikandar, Algal-derived biochar as an efficient adsorbent for removal of Cr(VI) in textile industry wastewater: nonlinear isotherm, kinetics and ANN studies, Chemosphere, 316 (2023) 137826, doi: 10.1016/j.chemosphere.2023.137826.
  2. A. Shakya, M. Vithanage, T. Agarwal, Influence of pyrolysis temperature on biochar properties and Cr(VI) adsorption from water with groundnut shell biochars: mechanistic approach, Environ. Res., 215 (2022) 114243, doi: 10.1016/j.envres.2022.114243.
  3. A.Y. Li, W.Z. Ge, L.H. Liu, G.H. Qiu, Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: a review, Environ. Res., 212 (2022) 113341, doi: 10.1016/j.envres.2022.113341.
  4. H.B. Li, X.L. Dong, E.B. da Silva, L.M. de Oliveira, Y.S. Chen, L.Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178 (2017) 466–478.
  5. X. Wang, X. Liu, H. Wen, K. Guo, H. Brendon, D. Liu, A green, efficient reductive N-formylation of nitro compounds catalyzed by metal-free graphitic carbon nitride supported on activated carbon, Appl. Catal., B, 321 (2022) 122042, doi: 10.1016/j.apcatb.2022.122042.
  6. F.C. Su, F. Wang, C.S. Zhang, T.L. Lu, S. Zhang, R.Q. Zhang, X. Qi, P.P. Liu, Ameliorating substance accessibility for microorganisms to amplify toluene degradation and power generation of microbial fuel cell by using activated carbon anode, J. Cleaner Prod., 377 (2022) 134481, doi: 10.1016/j.jclepro.2022.134481.
  7. A. Yamaguchi, A. Ishii, T. Kamijo, Influence of ionic strength and temperature on adsorption of
    tetrakis-N-methylpyridyl porphyrin onto mesoporous silica, Colloids Surf., A, 655 (2022) 130262, doi: 10.1016/j.colsurfa.2022.130262.
  8. R. Isaac, S. Siddiqui, Sequestration of Ni(II) and Cu(II) using FeSO4 modified Zea mays husk magnetic biochar: isotherm, kinetics, thermodynamic studies and RSM, J. Hazard. Mater. Adv., 8 (2022) 100162, doi: 10.1016/j.hazadv.2022.100162.
  9. L.C. Duan, Q.H. Wang, J.N. Li, F.H. Wang, H. Yang, B.L. Guo, Y. Hashimoto, Zero valent iron or Fe3O4-loaded biochar for remediation of Pb contaminated sandy soil: sequential extraction, magnetic separation, XAFS and ryegrass growth, Environ. Pollut., 308 (2022) 119702, doi: 10.1016/j.envpol.2022.119702.
  10. Y.Y. Cao, G.H. Shen, Y. Zhang, C.F. Gao, Y.F. Li, P.Z. Zhang, W.H. Xiao, L.J. Han, Impacts of carbonization temperature on the Pb(II) adsorption by wheat straw-derived biochar and related mechanism, Sci. Total Environ., 692 (2019) 479–489.
  11. T.H. Pham, T.T.H. Chu, D.K. Nguyen, T.K.O. Le, S.A. Obaid, S.A. Alharbi, J. Kim, M.V. Nguyen, Alginate-modified biochar derived from rice husk waste for improvement uptake performance of lead in wastewater, Chemosphere, 307 (2022) 135956, doi: 10.1016/j.chemosphere.2022.135956.
  12. F. Liu, R.X. Fang, X.F. Wang, J. Liu, Y. Li, The reaction characteristics and mechanism of pine sawdust chemicallooping gasification based on CoFe2O4 oxygen carrier, Renewable Energy, 195 (2022) 1300–1309.
  13. S. Hou, S.Y. Jia, J.J. Jia, Z.G. He, G.R. Li, Q.T. Zuo, H.F. Zhuang, Fe3O4 nanoparticles loading on cow dung based activated carbon as an efficient catalyst for catalytic microbubble ozonation of biologically pretreated coal gasification wastewater, J. Environ. Manage., 267 (2020) 110615, doi: 10.1016/j.jenvman.2020.110615.
  14. L. Peng, X.Y. Kong, Z.M. Wang, A. Ai-lati, Z.W. Ji, J. Mao, Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity, Food Chem., 339 (2021) 128159, doi: 10.1016/j.foodchem.2020.128159.
  15. Y.Z. Wang, H.L. Liu, D.W. Zhang, J.M. Liu, J. Wang, S. Wang, B.G. Sun, Baijiu vinasse extract scavenges glyoxal and inhibits the formation of Nε–carboxymethyllysine in dairy food, Molecules, 24 (2019) 1526, doi: 10.3390/molecules24081526.
  16. Y.J. Chen, R. Ma, X.C. Pu, X.Y. Fu, X.Y. Ju, M. Arif, X.Q. Yan, J. Qian, Y. Liu, The characterization of a novel magnetic biochar derived from sulfate-reducing sludge and its application for aqueous Cr(VI) removal through synergistic effects of adsorption and chemical reduction, Chemosphere, 308 (2022) 136258, doi: 10.1016/j.chemosphere.2022.136258.
  17. L. Zhao, Y. Zhang, L. Wang, H.H. Lyu, S.Y. Xia, J.C. Tang, Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: effect of different pyrolysis temperatures, Chemosphere, 294 (2022) 133820, doi: 10.1016/j.chemosphere.2022.133820.
  18. Y.T. Han, J.J. Zheng, C. Jiang, F. Zhang, L.C. Wei, L. Zhu, Hydrochloric acid-modified algal biochar for the removal of Microcystis aeruginosa: coagulation performance and mechanism, J. Environ. Chem. Eng., 10 (2022) 108903, doi: 10.1016/j.jece.2022.108903.
  19. V.-T. Nguyen, T.-B. Nguyen, C.P. Huang, C.-W. Chen, X.-T. Bui, C.-D. Dong, Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions, J. Water Process Eng., 40 (2021) 101908, doi: 10.1016/j.jwpe.2020.101908.
  20. F. Lü, X.M. Lu, S.S. Li, H. Zhang, L.M. Shao, P.J. He, Dozens-fold improvement of biochar redox properties by KOH activation, Chem. Eng. J., 429 (2022) 132203, doi: 10.1016/j.cej.2021.132203.
  21. Y. Qiu, Q. Zhang, B. Gao, M. Li, Z. Fan, W.J. Sang, H.R. Hao, X.N. Wei, Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation, Environ. Pollut., 265 (2020) 115018, doi: 10.1016/j.envpol.2020.115018.
  22. C.E. Turick, W.A. Apel, A bioprocessing strategy that allows for the selection of Cr(VI)-reducing bacteria from soils, J. Ind. Microbiol. Biotechnol., 18 (1997) 247–250.
  23. X.D. Wang, J. Xu, J. Liu, J. Liu, F. Xia, C.C. Wang, R.A. Dahlgren, W. Liu, Mechanism of Cr(VI) removal by magnetic greigite/ biochar composites, Sci. Total Environ., 700 (2020) 134414, doi: 10.1016/j.scitotenv.2019.134414.
  24. N. Liu, Y.T. Zhang, C. Xu, P. Liu, J. Lv, Y.Y. Liu, Q.Y. Wang, Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study, J. Hazard. Mater., 384 (2020) 121371, doi: 10.1016/j.jhazmat.2019.121371.
  25. A.U. Rajapaksha, Md. S. Alam, N. Chen, D.S. Alessi, A.D. Igalavithana, D.C.W. Tsang, Y.S. Ok, Removal of hexavalent chromium in aqueous solutions using biochar: chemical and spectroscopic investigations, Sci. Total Environ., 625 (2018) 1567–1573.
  26. J.-j. Pan, J. Jiang, R.-k. Xu, Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar, Chemosphere, 101 (2014) 71–76.
  27. X.X. Huang, Y.G. Liu, S.B. Liu, X.F. Tan, Y. Ding, G.M. Zeng, Y.Y. Zhou, M.M. Zhang, S.F. Wang, B.H. Zheng, Effective removal of Cr(VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles, RSC Adv., 6 (2016) 94–104.
  28. X.F. Tan, Y.G. Liu, G.M. Zeng, X. Wang, X.J. Hu, Y.L. Gu, Z.Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  29. F.-X. Dong, L. Yan, X.-H. Zhou, S.-T. Huang, J.-Y. Liang, W.-X. Zhang, Z.-W. Guo, P.-R. Guo, W. Qian, L.-J. Kong, W. Chu, Z.-H. Diao, Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism, J. Hazard. Mater., 416 (2021) 125930, doi: 10.1016/j.jhazmat.2021.125930.
  30. Z. Qiu, J.W. Tang, J.H. Chen, Q.H. Zhang, Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance, Environ. Pollut., 256 (2020) 113436, doi: 10.1016/j.envpol.2019.113436.
  31. M.P. Tong, L. He, H.F. Rong, M. Li, H.J. Kim, Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment, Water Res., 169 (2020) 115284, doi: 10.1016/j.watres.2019.115284.
  32. M.A. Badawi, N.A. Negm, M.T.H. Abou Kana, H.H. Hefni, M.M. Abdel Moneem, Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism, Int. J. Biol. Macromol., 99 (2017) 465–476.
  33. Y.N. He, J.B. Chen, J.P. Lv, Y.M. Huang, S.X. Zhou, W.Y. Li, Y.T. Li, F.Q. Chang, H.C. Zhang, T. Wågberg, G.Z. Hu, Separable amino-functionalized biochar/alginate beads for efficient removal of Cr(VI) from original electroplating wastewater at room temperature, J. Cleaner Prod., 373 (2022) 133790, doi: 10.1016/j.jclepro.2022.133790.
  34. L.W. Wang, N.S. Bolan, D.C.W. Tsang, D. Hou, Green immobilization of toxic metals using alkaline enhanced rice husk biochar: effects of pyrolysis temperature and KOH concentration, Sci. Total Environ., 720 (2020) 137584, doi: 10.1016/j.scitotenv.2020.137584.
  35. Y.F. Ma, Y. Qi, L. Yang, L. Wu, P. Li, F. Gao, X.B. Qi, Z.L. Zhang, Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: adsorption efficiency, mechanism and regeneration, J. Cleaner Prod., 292 (2021) 126005, doi: 10.1016/j.jclepro.2021.126005.
  36. G.C. Yin, X.W. Song, L. Tao, B. Sarkar, A.K. Sarmah, W.X. Zhang, Q.T. Lin, R.B. Xiao, Q.J. Liu, H.L. Wang, Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(II) from aqueous solutions, Chem. Eng. J., 389 (2020) 124465, doi: 10.1016/j.cej.2020.124465.
  37. S.S. Bai, L. Wang, F. Ma, S.S. Zhu, T. Xiao, T.M. Yu, Y.J. Wang, Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution, Chemosphere, 242 (2020) 125182, doi: 10.1016/j.chemosphere.2019.125182.
  38. S.Q. Shi, J.K. Yang, S. Liang, M.Y. Li, Q. Gan, K. Xiao, J.P. Hu, Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles, Sci. Total Environ., 628–629 (2018) 499–508.
  39. M. Genovese, J.H. Jiang, K. Lian, N. Holm, High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob, J. Mater. Chem. A, 3 (2015) 2903–2913.
  40. L.X. Zhang, S.Y. Tang, F.X. He, Y. Liu, W. Mao, Y.T. Guan, Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment, Chem. Eng. J., 378 (2019) 122215, doi: 10.1016/j.cej.2019.122215.
  41. W.F. Liu, J. Zhang, C.L. Zhang, L. Ren, Preparation and evaluation of activated carbon-based iron-containing adsorbents for enhanced Cr(VI) removal: mechanism study, Chem. Eng. J., 189 (2012) 295–302.
  42. N. Liu, Y.T. Zhang, C. Xu, P. Liu, J. Lv, Y.Y. Liu, Q.Y. Wang, Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study, J. Hazard. Mater., 384 (2020) 121371, doi: 10.1016/j.jhazmat.2019.121371.
  43. B.Y. Zeng, W.B. Xu, S.B. Khan, Y.J. Wang, J. Zhang, J.K. Yang, X.T. Su, Z. Lin, Preparation of sludge biochar rich in carboxyl/ hydroxyl groups by quenching process and its excellent adsorption performance for Cr(VI), Chemosphere, 285 (2021) 131439, doi: 10.1016/j.chemosphere.2021.131439.
  44. X.J. Zhang, L. Zhang, A. Li, Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal, J. Environ. Manage., 206 (2018) 989–998.