References

  1. P. Feng, W.P. Yang, D.H. Xu, M.Y. Ma, Y. Guo, Z.F. Jing, Characteristics, mechanisms and measurement methods of dissolution and deposition of inorganic salts in sub-/supercritical water, Water Res., 225 (2022) 119167, doi: 10.1016/j. watres.2022.119167.
  2. T.T. Xu, S.Z. Wang, Y.H. Li, J.N. Li, J.J. Cai, Y.S. Zhang, D.H. Xu, J. Zhang, Review of the destruction of organic radioactive wastes by supercritical water oxidation, Sci. Total Environ., 799 (2021) 149396, doi: 10.1016/j.scitotenv.2021.149396.
  3. P. Parthenidis, E. Evgenidou, D. Lambropoulou, Wet and supercritical oxidation for landfill leachate treatment: a short review, J. Environ. Chem. Eng., 10 (2022) 107837, doi: 10.1016/j.jece.2022.107837.
  4. Z. Chen, H.Z. Chen, X.L. Liu, C.L. He, D.T. Yue, Y.J. Xu, An inclined plug-flow reactor design for supercritical water oxidation, Chem. Eng. J., 343 (2018) 351–361.
  5. W. Liao, Q.W. Zhao, H.J. Chen, C.H. Liao, Y.F. Wang, X.J. Wang, Experimental investigation and simulation optimization of a pilot-scale supercritical water oxidation system, Energy Convers. Manage., 199 (2019) 111965, doi: 10.1016/j.enconman.2019.111965.
  6. M. Belén García-Jarana, P. Casademont, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa, Hybridization of supercritical water oxidation and gasification processes at pilot plant scale, J. Supercrit. Fluids, 186 (2022) 105609, doi: 10.1016/j.supflu.2022.105609.
  7. D.H. Xu, S.Z. Wang, X.Y. Tang, Y.M. Gong, Y. Guo, Y.Z. Wang, J. Zhang, Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge, Chem. Eng. Res. Des., 90 (2012) 288–297.
  8. J.Q. Yang, S.Z. Wang, Y.H. Li, Y. Zhang, D.H. Xu, Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge, J. Environ. Manage., 233 (2019) 131–140.
  9. F.M. Zhang, Y.F. Li, Z.J. Liang, T. Wu, Energy conversion and utilization in supercritical water oxidation systems: a review, Biomass Bioenergy, 156 (2022) 106322, doi: 10.1016/j.biombioe.2021.106322.
  10. L.L. Qian, S.Z. Wang, M.M. Ren, S. Wang, Co-oxidation effects and mechanisms between sludge and alcohols (methanol, ethanol and isopropanol) in supercritical water, Chem. Eng. J., 366 (2019) 223–234.
  11. W.P. Yang, D.H. Xu, H. Wang, X.H. Gong Y. Wei, Y. Wang, Supercritical water oxidation of coal pyrolysis wastewater: effects of main operating parameters and reaction pathways of 2-(N-Morpholino)ethanesulfonic acid, Fuel, 322 (2022) 124261, doi: 10.1016/j.fuel.2022.124261.
  12. A. Leybros, A. Roubaud, P. Guichardon, O. Boutin, Ion exchange resins destruction in a stirred supercritical water oxidation reactor, J. Supercrit. Fluids, 51 (2010) 369–375.
  13. O.N. Fedyaeva, S.V. Morozov, A.A. Vostrikov, Supercritical water oxidation of chlorinated waste from pulp and paper mill, Chemosphere, 283 (2021) 131239, doi: 10.1016/j.chemosphere.2021.131239.
  14. O.N. Fedyaeva, V.R. Antipenko, A.A. Vostrikov, Heavy oil upgrading at oxidation of activated carbon by supercritical water-oxygen fluid, J. Supercrit. Fluids, 126 (2017) 55–64.
  15. J.P.S. Queiroz, M.D. Bermejo, F. Mato, M.J. Cocero, Supercritical water oxidation with hydrothermal flame as internal heat source: efficient and clean energy production from waste, J. Supercrit. Fluids, 96 (2015) 103–113.
  16. Q.H. Yan, Y.W. Hou, J.R. Luo H.J. Miao, H. Zhang, The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology, Energy Convers. Manage., 129 (2016) 122–130.
  17. S.H. Guo, C.Y.F. Ren, Y. Wang S. Liu, M.M. Du, Y.N. Chen, L.J. Chen, Thermodynamic modeling and analysis of the heat integration and power generation in pig manure supercritical water gasification system, Energy Convers. Manage., 248 (2021) 114809, doi: 10.1016/j.enconman.2021.114809.
  18. M.D. Bermejo, M.J. Cocero, F. Fernandez-Polanco, A process for generating power from the oxidation of coal in supercritical water, Fuel, 83 (2004) 195–204.
  19. F. Marias, F. Mancini, F. Cansell, Mercadier, Energy recovery in supercritical water oxidation process, Environ. Eng. Sci., 25 (2008) 123–130.
  20. Y.F. Huang, F.M. Zhang, Z.J. Liang, T. Wu, Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems, Energy, 266 (2023) 126452, doi: 10.1016/j.energy.2022. 126452.
  21. F. Zhang, B.Y. Shen, C.J. Su, C.Y. Xu, J.N. Ma, Y. Xiong, C.Y. Ma, Energy consumption and exergy analyses of a supercritical water oxidation system with a transpiring wall reactor, Energy Convers. Manage., 145 (2017) 82–92.
  22. J.M. Liang, Y. Liu, J.W. Chen, J.Q. E, E. Leng, F. Zhang, G.L. Liao, Performance comparison of black liquor gasification and oxidation in supercritical water from thermodynamic, environmental, and techno-economic perspectives, Fuel, 334 (2023) 126787, doi: 10.1016/j.fuel.2022.126787.
  23. C.C. Luo, H. Xi, Y.Q. Feng, Z.C. Hung, Performance evaluation of a supercritical water oxidation cogeneration system using hydrogen peroxide as oxidant, Energy Convers. Manage., 267 (2022) 115914, doi: 10.1016/j.enconman.2022.115914.
  24. P. Sharan, S.K. Thengane, T.J. Yoon, J.C. Lewis, R. Singh, R.P. Currier, A.T. Findikoglu, A novel approach for produced water treatment: supercritical water oxidation and desalination, Desalination, 532 (2022) 115716, doi: 10.1016/j.desal. 2022.115716.
  25. H.S. Li, S.Q. Zhou, Y.B. Sun, J. Lv, Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent, Waste Manage., 30 (2010) 2122–2129.
  26. J.L. Chen, H.F. Chen, F.M. Zhang, Z.Y. Chen, C.J. Su, Simulation and economic analysis of supercritical water oxidation system based on nitrogen protective film, Environ. Eng., 37 (2019) 61–66.
  27. H. Xi, M.J. Li, Z.H. Huang, M.W. Wang, Energy, exergy and economic analyses and performance assessment of a trigeneration system for power, freshwater and heat based on supercritical water oxidation and organic Rankine cycle, Energy Convers. Manage., 243 (2021) 114395, doi: 10.1016/j.enconman.2021.114395.
  28. N. Segond, Y. Matsumura, K. Yamamoto, Determination of ammonia oxidation rate in sub- and supercritical water, Ind. Eng. Chem., 41 (2022) 6020–6027.
  29. F.M. Zhang, Y.X. Ding, C.J. Su, Z.Y. Chen, Energy self-sufficiency of a supercritical water oxidation system with an improved cooled-wall reactor for power generation, Appl. Therm. Eng., 172 (2020) 115158, doi: 10.1016/j.applthermaleng.2020.115158.
  30. R. Smith, Chemical Process Design and Integration, John Wiley & Sons Ltd., Chichester, 2005.
  31. C. Maxwell, Cost Indices, 2021.