References
- J.-j. Wan, G.-l. Zhu, G.-x. Li, Y. He, Study on the technic of kai
film brine refined, J. Salt Chem. Ind., 4 (2006) 1–9.
- Z. Ong, Y. Zhang, R. Cai, L. Wang, Q. Zhang, X. Huang, Study on
Ca2+, Mg2+ removal from salt type brine by NaOH and Na2CO3
for salt water production by nanofiltration, J. Salt Chem. Ind.,
4 (2013) 17–19.
- H. Zhao, Operation essentials for calcium/magnesium ion
adsorption by chelating resin, Guangzhou Chem. Ind., 13 (2011)
24–26.
- H. Li, Z. Zhang, H. Zhang, Y. Wang, X. Guo, B. He, The
investigation of the production of refined brine used ln chloroalkali
membrane by D412 chelating resin ion, Exch. Adsorpt.,
2 (1997) 195–202.
- D.H. Shin, Y.G. Ko, U.S. Choi, W.N. Kim, Design of high
efficiency chelate fibers with an amine group to remove heavy
metal ions and pH-related FTIR analysis, Ind. Eng. Chem. Res.,
9 (2004) 2060–2066.
- C.A. Fetscher, S. Hills, S.A. Lipowski, N.J. Livingston, Process
for conversion of amidoxime polymers to polyhydroxamic
acids using aqueous hydrochloric acid solutions, Patente
Americana, 3 (1967) 345–344.
- S. Kobayashi, M. Tokunoh, T. Saegusa, F. Mashio,
Poly(allylamine). chelating properties and resins for uranium
recovery from seawater, Macromolecules, 12 (1985) 2357–2361.
- S. Kobayashi, K.D. Suh, Y. Shirokura, Chelating ability of
poly(vinylamine): effects of polyamine structure on chelation,
Macromolecules, 5 (1989) 2363–2366.
- C.-C. Wang, C.-C. Wang, Adsorption characteristics of metal
complexes by chelated copolymers with amino group,
React. Funct. Polym., 66 (2006) 343–356.
- A.A. Shunkevich, Z.I. Akulich, G.V. Mediak, V.S. Soldatov,
Acid–base properties of ion exchangers. III. Anion exchangers
on the basis of polyacrylonitrile fiber, React. Funct. Polym.,
63 (2005) 27–34.
- K. Tekin, L. Uzun, Ç.A. Şahin, S. Bektaş, A. Denizli, Preparation
and characterization of composite cryogels containing
imidazole group and use in heavy metal removal, React. Funct.
Polym., 71 (2011) 985–993.
- E. Repo, L. Malinen, R. Koivula, R. Harjula, M. Sillanpää,
Capture of Co(II) from its aqueous EDTA-chelate by DTPAmodified
silica gel and chitosan, J. Hazard. Mater., 187 (2011)
122–132.
- Y. Xu, T. Wang, Z. He, M. Zhou, W. Yu, B. Shi, K. Huang,
A polymerization-cutting strategy: self-protection synthesis
of thiol-based nanoporous adsorbents for efficient mercury
removal, Chemistry: A Eur. J., 24 (2018) 14436–14441.
- C.A. Fetscher, Extraction of Heavy of Metals from Solutions
with Polyamidoximes, US,3088798[P].1963-05-07.
- I.L. Kalnin, A.H. di Edwardo, E.W. Choe, et al., Chemical
Modification of Polyacrylonitrile Fiber for Carbonization,
For NATL Meet of ACS 175th, California, 1978.
- G.S. Chauhan, S.C. Jaswal, M. Verma, Post functionalization
of carboxymethylated starch and acrylonitrile based networks
through amidoximation for use as ion sorbents, Carbohydr.
Polym., 66 (2006) 435–443.
- I. Vega, W. Morris, N. D’Accorso, PAN chemical modification:
synthesis and characterization of terpolymers with
1,2,4-oxadiazolic pendant groups, React. Funct. Polym.,
12 (2006) 1609–l618.
- A.S. El-Khouly, Y. Takahashi, A.A. Saafan, E. Kenawy,
Y.A. Hafiz, Study of heavy metal ion absorbance by amidoxime
group introduced to cellulose-graft-polyacrylonitrile,
J. Appl. Polym. Sci., 120 (2011) 866–873.
- M.F. Cheira, Characteristics of uranium recovery from
phosphoric acid by an aminophosphonic resin and application
to wet process phosphoric acid, Eur. J. Chem., 1 (2015) 48–56.
- M.C. Yebra-Biurrun, A. Bermejo-Barrera, M.P. Bermejo-Barrera,
Synthesis and characterization of a poly(aminophosphonic
acid) chelating resin, Anal. Chim. Acta, 1 (1992) 53–58.
- S.K. Sahni, R. Van Bennekom, J. Reedijk, A spectral study of
transition-metal complexes on a chelating ion-exchange resin
containing aminophosphonic acid groups, Polyhedron, 4 (1985)
1643–1658.
- Q. Ma, M. Lu, A new spherical aminophosphonic reins with
phenolic backbone, Ion Exch. Adsorpt., 3 (2000) 239–246.
- Q. Pu, P. Liu, X. Wu, X. Chang, Z. Su, Synthesis and application
of an aminophosphonic-carboxylic acid chelating resin for
preconcentration of rare-earth elements, J. Lanzhou Univ.
(Nat. Sci.), 3 (2002) 68–72.
- W. Dong, G. Zhang, J. Zhu, Preparation of amino chelating
resins and these performances, Shanxi Univ. Sci. Technol.,
2 (2010) 96–99&103.
- Z. Lu, Synthesis and Application of Aminophosphonic Acid
Chelating Resin, Jiangnan University, 2008.
- Z. Shu, C. Xiong, X. Wang, Adsorption behavior and
mechanism of amino methylene phosphonic acid resin for
Ag(I), Trans. Nonferrous Met. Soc. China, 16 (2006) 700–704.
- Q. Xue, S. Xiao, C. Liu, J. Qiu, Preparation of α-aminophosphonates
polymer gel and its adsorption of copper ion,
Mater. Sci. Eng., 2 (2013) 131–134.
- R. Liu, H. Tang, B. Zhang, Removal of Cu(II), Zn(II), Cd(III) and
Hg(II) from waste water by poly(acrylaminophosphonic)-type
chelating fiber, Chemosphere, 13 (1999) 3169–3179.
- K. Vaaramaa, J. Lehto, H+Na+ exchange in an aminophosphonatechelating,
React. Funct. Polym., 33 (1997) 19–24.
- A.W. Trochimczuk, J. Jezierska, New amphoteric
chelating/ion exchange resins with substituted carbamylethylenephosphonates;
synthesis and EPR studies of their
Cu(II) complexes, Polymer, 41 (2000) 3463–3470.
- Diamond Shamrock Corporation, Cation-Exchange Resins
Having Cross-Linked Vinyl Aromatic Polymer Matrix with
Attached Amino Alkylene Phosphonic Acid Groups, Their Use,
and Preparation, US-4002564-A, 1977.01.11.
- E. Bayer, X.N. Liu, U. Tallarek, A. Ellwanger, K. Albert,
M. Kutubuddin, Polystyrene-immobilized poly(ethylene
imine) chains — a new class of graft copolymers, Polym. Bull.,
37 (1996) 565–572.
- P.A. Riveros, The removal of antimony from copper electrolytes
using amino-phosphonic resins: improving the elution of
pentavalent antimony, Hydrometallurgy, 105 (2010) 110–114.
- J. Lehto, K. Vaaramaa, H. Leinonen, Ion exchange of zinc on
an aminophosphonate-chelating resin, React. Funct. Polym.,
33 (1997) 13–18.
- K. Moedritzer, R.R. Irani, The direct synthesis of
α-aminomethylphosphonic acids. Mannich-type reactions with
orthophosphorous acid, J. Org. Chem., 31 (1966) 1603–1607.
- The Dow Chemical Company, Process for Preparing an
Aminonethylphosphonic Chelating Resin, EP0350172,
1993-06-23.
- International S.A. Duolite, M.A.G. Cornette, J. Carbonel,
J.E.A. Franc, P.D.A. Grammont, Alkylaminophosphonic
Chelating Resins, Their Preparation and Use in Purifying
Brines, US 4818773,1989-4-4.
- S. Belfer, S. Binman, E. Korngold, Introduction of pyridine
moeities into sulfochlorinated polyethylene hollow fibers,
React. Polym., 25 (1995) 37–46.
- L. Dominguez, K.R. Benak, J. Economy, Design of high efficiency
polymeric cation exchange fibers, Polym. Adv. Technol.,
12 (2001) 197–205.
- W. Lin, Y. Lu, H. Zeng, Extraction of gold from Au(III) ion
containing solution by a reactive fiber, J. Appl. Polym. Sci.,
49 (1993) 1635–1638.
- R. Liu, H. Tang, B. Zhang, Adsorption characterization of
aminophosphonic chelating fiber for Hg(II) ion, Environ.
Chem., 3 (1998) 231–236.
- A. Jyo, Y. Hamabe, H. Matsuura, Y. Shibata, Y. Fujii, M. Tamada,
A. Katakai, Preparation of bifunctional chelating fiber
containing iminodi(methylphosphonate) and sulfonate and
its performances in column-mode uptake of Cu(II) and Zn(II),
React. Funct. Polym., 70 (2010) 508–515.
- Y. Bai, Z. Chen, B. Liu, G. Huang, Structural properties
characterization and preparation of crosslinking carboxylic
fibers based on polyacrylonitrile fibers, China Synth. Fiber Ind.,
243 (2019) 41.
- B. Meng, Z. Chen, G. Huang, D. Liu, Preparation of amine
chelating fiber and its adsorption properties for Cu2+,
China Synth. Fiber Ind., 6 (2017) 28.
- Q. Fan, Adsorbent Preparation from Waste Molecular Sieve
and Study of its Adsorption Behavior of Water Hardness,
China University of Petroleum, China, 2012.
- J. Wang, Application of Fluorinated Amino Phosphonic Acid
Chelating Resins in Refining of Secondary Brine for Ion-
Exchange Membrane Electrolysis, Chlor-Alkali Ind., 12 (2010)
12–16.
- Y. Liu, X. Zhang, J. Wang, A critical review of various adsorbents
for selective removal of nitrate from water: structure,
performance and mechanism, Chemosphere, 291 (2022) 132728,
doi: 10.1016/j.chemosphere.2021.132728.