References
- S. Yan, J. Geng, R. Guo, Y. Du, H. Zhang, Hydronium
jarosite activation of peroxymonosulfate for the oxidation of
organic contaminant in an electrochemical reactor driven by
microbial fuel cell, J. Hazard. Mater., 333 (2017) 358–368.
- K. Doudrick, T. Yang, K. Hristovski, P. Westerhoff, Photocatalytic
nitrate reduction in water: managing the hole scavenger and
reaction by-product selectivity, Appl. Catal., B, 136 (2013)
40–47.
- M. Kaneko, J. Nemoto, H. Ueno, N. Gokan, K. Ohnuki,
M. Horikawa, R. Saito, T. Shibata, Photoelectrochemical
reaction
of biomass and bio-related compounds with
nanoporous TiO2 film photoanode and O2-reducing cathode,
Electrochem. Commun., 8 (2006) 336–340.
- X. Wang, J. Hu, Q. Chen, P. Zhang, L. Wu, J. Li, B. Liu, K. Xiao,
S. Liang, L. Huang, Synergic degradation of
2,4,6-trichlorophenol
in microbial fuel cells with intimately coupled photocatalyticelectrogenic
anode, Water Res., 156 (2019) 125–135.
- N. Ibrahim, S.K. Kamarudin, L. Minggu, Biofuel from biomass
via photo-electrochemical reactions: an overview, J. Power
Sources, 259 (2014) 33–42.
- K. Iyatani, Y. Horiuchi, S. Fukumoto, M. Takeuchi, M. Anpo,
M. Matsuoka, Separate-type Pt-free photofuel cell based
on a visible light-responsive TiO2 photoanode: effect of
hydrofluoric acid treatment of the photoanode, Appl. Catal., A,
458 (2013) 162–168.
- H.-X. Han, C. Shi, L. Yuan, G.-P. Sheng, Enhancement of
methyl orange degradation and power generation in a
photoelectrocatalytic microbial fuel cell, Appl. Energy,
204 (2017) 382–389.
- Q. Wang, J. Xu, Y. Ge, Y. Zhang, H. Feng, Y. Cong, Efficient
nitrogen removal by simultaneous photoelectrocatalytic
oxidation and electrochemically active biofilm denitrification,
Electrochim. Acta, 198 (2016) 165–173.
- H.-Y. Cheng, X.-D. Tian, C.-H. Li, S.-S. Wang, S.-G. Su,
H.-C. Wang, B. Zhang, H.M.A. Sharif, A.-J. Wang, Microbial
photoelectrotrophic denitrification as a sustainable and
efficient way for reducing nitrate to nitrogen, Environ. Sci.
Technol., 51 (2017) 12948–12955.
- Q. Liao, L. Li, R. Chen, X. Zhu, H. Wang, D. Ye, X. Cheng,
M. Zhang, Y. Zhou, Respective electrode potential characteristics
of photocatalytic fuel cell with visible-light responsive
photoanode and air-breathing cathode, Int. J. Hydrogen Energy,
40 (2015) 16547–16555.
- J. Zhang, Z. Wang, L. Chu, R. Chen, C. Zhang,
S. Toan, D.M. Bagley, J. Sun, S. Dong, M. Fan, Unified photoelectrocatalytic
microbial fuel cell harnessing 3D binderfree
photocathode for simultaneous power generation and
dual pollutant removal, J. Power Sources, 481 (2021) 229133,
doi: 10.1016/j.jpowsour.2020.229133.
- H. Mahmoodi, M. Fattahi, M. Motevassel, Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from
aqueous solution: preparation, characterization, kinetic and
thermodynamic modelling, RSC Adv., 11 (2021) 36289–36304.
- H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai,
Photocatalytic conversion of nitrogen to ammonia with water
on surface oxygen vacancies of titanium dioxide, J. Am. Chem.
Soc., 139 (2017) 10929–10936.
- X. Xu, B. Zhou, F. Ji, Q. Zou, Y. Yuan, Z. Jin, D. Zhao, J. Long,
Nitrification, denitrification, and power generation enhanced
by photocatalysis in microbial fuel cells in the absence of
organic compounds, Energy Fuels, 29 (2015) 1227–1232.
- C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process
for purification of polluted water: bridging fundamentals
to applications, J. Nanomater., 2013 (2013) 319637,
doi: 10.1155/2013/319637.
- S. Liu, S. Huang, Atomically dispersed Co atoms on MoS2
monolayer: a promising high-activity catalyst for CO
oxidation, Appl. Surf. Sci., 425 (2017) 478–483.
- X. Yang, H. Huang, M. Kubota, Z. He, N. Kobayashi, X. Zhou,
B. Jin, J. Luo, Synergetic effect of MoS2 and g-C3N4 as cocatalysts
for enhanced photocatalytic H2 production activity of TiO2,
Mater. Res. Bull., 76 (2016) 79–84.
- J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis,
D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe
quantum dots on MoS2 nanosheets and their near-infrared
photoresponse, Adv. Funct. Mater., 24 (2014) 5798–5806.
- J. Guo, F. Li, Y. Sun, X. Zhang, L. Tang, Oxygen-incorporated
MoS2 ultrathin nanosheets grown on graphene for efficient
electrochemical hydrogen evolution, J. Power Sources,
291 (2015) 195–200.
- Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheetmodified
CdS branch-like heterostructures with enhanced
photostability and photocatalytic activity, J. Mater. Chem. A,
2 (2014) 2578–2584.
- J.R. Jaleel UC, R. Madhushree, K.R. Sunaja Devi, D. Pinheiro,
M.K. Mohan, Structural, morphological and optical properties
of MoS2-based materials for photocatalytic degradation
of organic dye, Photochem, 2 (2022) 628–650.
- N. Thomas, S. Mathew, K.M. Nair, K. O’Dowd, P. Forouzandeh,
A. Goswami, G. McGranaghan, S.C. Pillai,
2D MoS2:
structure, mechanisms, and photocatalytic applications,
Mater. Today Sustainability, 13 (2021) 100073, doi: 10.1016/j.mtsust.2021.100073.
- Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite
and graphene: high-performance and recyclable visible-light
photocatalysis, Appl. Catal., B, 111 (2012) 280–287.
- S. Dolatabadi, M. Fattahi, M. Nabati, Solid state dispersion
and hydrothermal synthesis, characterization and evaluations
of TiO2/ZnO nanostructures for degradation of Rhodamine B,
Desal. Water Treat., 231 (2021) 425–435.
- M. Li, J. Zhou, Y.-G. Bi, S.-Q. Zhou, C.-H. Mo, Transition
metals (Co, Mn, Cu) based composites as catalyst in microbial
fuel cells application: the effect of catalyst composition,
Chem. Eng. J., 383 (2020) 123152, doi: 10.1016/j.cej.2019.123152.
- J. Ren, H. Li, N. Li, Y. Song, J. Chen, L. Zhao, A threedimensional
electrode bioelectrochemical system for the
advanced oxidation of p-nitrophenol in an aqueous solution,
RSC Adv., 10 (2020) 17163–17170.
- B. Kokabian, R. Smith, J.P. Brooks, V.G. Gude, Bioelectricity
production in photosynthetic microbial desalination cells
under different flow configurations, J. Ind. Eng. Chem.,
58 (2018) 131–139.
- L. Li, Y. Liu, Ammonia removal in electrochemical oxidation:
mechanism and pseudo-kinetics, J. Hazard. Mater., 161 (2009)
1010–1016.
- A.M.A. Omar, A. Hassen, O.I. Metwalli, M.R. Saber,
S.R.E. Mohamed, A.S.G. Khalil, Construction of 2D layered
TiO2@MoS2 heterostructure for efficient adsorption and
photodegradation of organic dyes, Nanotechnology, 32 (2021)
335605, doi: 10.1088/1361-6528/abff8a.
- M.R. Saber, G. Khabiri, A.A. Maarouf, M. Ulbricht, A.S.G. Khalil,
A comparative study on the photocatalytic degradation of
organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS2
nano-sheets, RSC Adv., 8 (2018) 26364–26370.
- L. Xu, L. Yang, E.M. Johansson, Y. Wang, P. Jin, Photocatalytic
activity and mechanism of bisphenol a removal over TiO2–x/rGO
nanocomposite driven by visible light, Chem. Eng. J., 350 (2018)
1043–1055.
- X. Zhang, X. Huang, M. Xue, X. Ye, W. Lei, H. Tang, C. Li,
Hydrothermal synthesis and characterization of 3D flower-like
MoS2 microspheres, Mater. Lett., 148 (2015) 67–70.
- X. Hou, Z. Wang, G. Fan, H. Ji, S. Yi, T. Li, Y. Wang, Z. Zhang,
L. Yuan, R. Zhang, J. Sun, D. Chen, Hierarchical three-dimensional
MoS2/GO hybrid nanostructures for triethylaminesensing
applications with high sensitivity and selectivity, Sens.
Actuators, B, 317 (2020) 128236, doi: 10.1016/j.snb.2020.128236.
- G. Deokar, D. Vignaud, R. Arenal, P. Louette,
J.-F. Colomer, Synthesis and characterization of MoS2 nanosheets,
Nanotechnology, 27 (2016) 075604, doi: 10.1088/0957-4484/27/7/075604.
- Y. Lv, H. Pan, J. Lin, Z. Chen, Y. Li, H. Li, M. Shi, R. Yin,
S. Zhu, One-pot hydrothermal approach towards 2D/2D
heterostructure based on 1T MoS2 chemically bonding
with GO for extremely high electrocatalytic performance,
Chem. Eng. J., 428 (2022) 132072, doi: 10.1016/j.cej.2021.132072.
- X. Li, S. Guo, W. Li, X. Ren, J. Su, Q. Song, A.J. Sobrido, B. Wei,
Edge-rich MoS2 grown on edge-oriented three-dimensional
graphene glass for high-performance hydrogen evolution,
Nano Energy, 57 (2019) 388–397.
- W. Li, S. Zhang, G. Chen, Y. Hua, Simultaneous electricity
generation and pollutant removal in microbial fuel cell with
denitrifying biocathode over nitrite, Appl. Energy, 126 (2014)
136–141.
- E. Lacasa, P. Cañizares, J. Llanos, M.A. Rodrigo, Removal of
nitrates by electrolysis in non-chloride media: effect of the
anode material, Sep. Purif. Technol., 80 (2011) 592–599.
- Y. Yang, H. Liu, The mechanisms of ozonation for ammonia
nitrogen removal: an indirect process, J. Environ. Chem. Eng.,
10 (2022) 108525, doi: 10.1016/j.jece.2022.108525.
- C. Yin, T. Ye, Y. Yu, W. Li, Q. Ren, Detection of hydroxyl
radicals in sonoelectrochemical system, Microchem. J.,
144 (2019) 369–376.
- D.E. Kissel, M. Cabrera, S. Paramasivam, Ammonium,
Ammonia, and Urea Reactions in Soils, J.S. Schepers,
W.R. Raun, Eds., Nitrogen in Agricultural Systems, Agronomy
Monographs, Vol. 49, 2008, pp. 101–155.
doi: 10.2134/agronmonogr49.c4
- H.-Y. Ma, L. Zhao, L.-H. Guo, H. Zhang, F.-J. Chen, W.-C. Yu,
Roles of reactive oxygen species (ROS) in the photocatalytic
degradation of pentachlorophenol and its main toxic
intermediates by TiO2/UV, J. Hazard. Mater., 369 (2019) 719–726.
- Y. Liu, J. Xie, C.N. Ong, C.D. Vecitis, Z. Zhou, Electrochemical
wastewater treatment with carbon nanotube filters coupled
with in-situ generated H2O2, Environ. Sci. Water Res. Technol.,
1 (2015) 769–778.
- D. Raptis, A. Ploumistos, E. Zagoraiou, E. Thomou, M. Daletou,
L. Sygellou, D. Tasis, P. Lianos, Co-N doped reduced
graphene oxide as oxygen reduction electrocatalyst applied
to photocatalytic fuel cells, Catal. Today, 315 (2018) 31–35.
- K. Zhao, J. Bai, Q. Zeng, Y. Zhang, J. Li, L. Li, L. Xia, B. Zhou,
Efficient wastewater treatment and simultaneously electricity
production using a photocatalytic fuel cell based on the radical
chain reactions initiated by dual photoelectrodes, J. Hazard.
Mater., 337 (2017) 47–54.
- M. Li, Y. Liu, L. Dong, C. Shen, F. Li, M. Huang, C. Ma, B. Yang,
X. An, W. Sand, Recent advances on photocatalytic fuel cell
for environmental applications—the marriage of photocatalysis
and fuel cells, Sci. Total Environ., 668 (2019) 966–978.