References

  1. S. Yan, J. Geng, R. Guo, Y. Du, H. Zhang, Hydronium jarosite activation of peroxymonosulfate for the oxidation of organic contaminant in an electrochemical reactor driven by microbial fuel cell, J. Hazard. Mater., 333 (2017) 358–368.
  2. K. Doudrick, T. Yang, K. Hristovski, P. Westerhoff, Photocatalytic nitrate reduction in water: managing the hole scavenger and reaction by-product selectivity, Appl. Catal., B, 136 (2013) 40–47.
  3. M. Kaneko, J. Nemoto, H. Ueno, N. Gokan, K. Ohnuki, M. Horikawa, R. Saito, T. Shibata, Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode, Electrochem. Commun., 8 (2006) 336–340.
  4. X. Wang, J. Hu, Q. Chen, P. Zhang, L. Wu, J. Li, B. Liu, K. Xiao, S. Liang, L. Huang, Synergic degradation of
    2,4,6-trichlorophenol in microbial fuel cells with intimately coupled photocatalyticelectrogenic anode, Water Res., 156 (2019) 125–135.
  5. N. Ibrahim, S.K. Kamarudin, L. Minggu, Biofuel from biomass via photo-electrochemical reactions: an overview, J. Power Sources, 259 (2014) 33–42.
  6. K. Iyatani, Y. Horiuchi, S. Fukumoto, M. Takeuchi, M. Anpo, M. Matsuoka, Separate-type Pt-free photofuel cell based on a visible light-responsive TiO2 photoanode: effect of hydrofluoric acid treatment of the photoanode, Appl. Catal., A, 458 (2013) 162–168.
  7. H.-X. Han, C. Shi, L. Yuan, G.-P. Sheng, Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell, Appl. Energy, 204 (2017) 382–389.
  8. Q. Wang, J. Xu, Y. Ge, Y. Zhang, H. Feng, Y. Cong, Efficient nitrogen removal by simultaneous photoelectrocatalytic oxidation and electrochemically active biofilm denitrification, Electrochim. Acta, 198 (2016) 165–173.
  9. H.-Y. Cheng, X.-D. Tian, C.-H. Li, S.-S. Wang, S.-G. Su, H.-C. Wang, B. Zhang, H.M.A. Sharif, A.-J. Wang, Microbial photoelectrotrophic denitrification as a sustainable and efficient way for reducing nitrate to nitrogen, Environ. Sci. Technol., 51 (2017) 12948–12955.
  10. Q. Liao, L. Li, R. Chen, X. Zhu, H. Wang, D. Ye, X. Cheng, M. Zhang, Y. Zhou, Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode, Int. J. Hydrogen Energy, 40 (2015) 16547–16555.
  11. J. Zhang, Z. Wang, L. Chu, R. Chen, C. Zhang, S. Toan, D.M. Bagley, J. Sun, S. Dong, M. Fan, Unified photoelectrocatalytic microbial fuel cell harnessing 3D binderfree photocathode for simultaneous power generation and dual pollutant removal, J. Power Sources, 481 (2021) 229133, doi: 10.1016/j.jpowsour.2020.229133.
  12. H. Mahmoodi, M. Fattahi, M. Motevassel, Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling, RSC Adv., 11 (2021) 36289–36304.
  13. H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide, J. Am. Chem. Soc., 139 (2017) 10929–10936.
  14. X. Xu, B. Zhou, F. Ji, Q. Zou, Y. Yuan, Z. Jin, D. Zhao, J. Long, Nitrification, denitrification, and power generation enhanced by photocatalysis in microbial fuel cells in the absence of organic compounds, Energy Fuels, 29 (2015) 1227–1232.
  15. C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process for purification of polluted water: bridging fundamentals to applications, J. Nanomater., 2013 (2013) 319637, doi: 10.1155/2013/319637.
  16. S. Liu, S. Huang, Atomically dispersed Co atoms on MoS2 monolayer: a promising high-activity catalyst for CO oxidation, Appl. Surf. Sci., 425 (2017) 478–483.
  17. X. Yang, H. Huang, M. Kubota, Z. He, N. Kobayashi, X. Zhou, B. Jin, J. Luo, Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Mater. Res. Bull., 76 (2016) 79–84.
  18. J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse, Adv. Funct. Mater., 24 (2014) 5798–5806.
  19. J. Guo, F. Li, Y. Sun, X. Zhang, L. Tang, Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution, J. Power Sources, 291 (2015) 195–200.
  20. Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheetmodified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity, J. Mater. Chem. A, 2 (2014) 2578–2584.
  21. J.R. Jaleel UC, R. Madhushree, K.R. Sunaja Devi, D. Pinheiro, M.K. Mohan, Structural, morphological and optical properties of MoS2-based materials for photocatalytic degradation of organic dye, Photochem, 2 (2022) 628–650.
  22. N. Thomas, S. Mathew, K.M. Nair, K. O’Dowd, P. Forouzandeh, A. Goswami, G. McGranaghan, S.C. Pillai,
    2D MoS2: structure, mechanisms, and photocatalytic applications, Mater. Today Sustainability, 13 (2021) 100073, doi: 10.1016/j.mtsust.2021.100073.
  23. Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis, Appl. Catal., B, 111 (2012) 280–287.
  24. S. Dolatabadi, M. Fattahi, M. Nabati, Solid state dispersion and hydrothermal synthesis, characterization and evaluations of TiO2/ZnO nanostructures for degradation of Rhodamine B, Desal. Water Treat., 231 (2021) 425–435.
  25. M. Li, J. Zhou, Y.-G. Bi, S.-Q. Zhou, C.-H. Mo, Transition metals (Co, Mn, Cu) based composites as catalyst in microbial fuel cells application: the effect of catalyst composition, Chem. Eng. J., 383 (2020) 123152, doi: 10.1016/j.cej.2019.123152.
  26. J. Ren, H. Li, N. Li, Y. Song, J. Chen, L. Zhao, A threedimensional electrode bioelectrochemical system for the advanced oxidation of p-nitrophenol in an aqueous solution, RSC Adv., 10 (2020) 17163–17170.
  27. B. Kokabian, R. Smith, J.P. Brooks, V.G. Gude, Bioelectricity production in photosynthetic microbial desalination cells under different flow configurations, J. Ind. Eng. Chem., 58 (2018) 131–139.
  28. L. Li, Y. Liu, Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics, J. Hazard. Mater., 161 (2009) 1010–1016.
  29. A.M.A. Omar, A. Hassen, O.I. Metwalli, M.R. Saber, S.R.E. Mohamed, A.S.G. Khalil, Construction of 2D layered TiO2@MoS2 heterostructure for efficient adsorption and photodegradation of organic dyes, Nanotechnology, 32 (2021) 335605, doi: 10.1088/1361-6528/abff8a.
  30. M.R. Saber, G. Khabiri, A.A. Maarouf, M. Ulbricht, A.S.G. Khalil, A comparative study on the photocatalytic degradation of organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS2 nano-sheets, RSC Adv., 8 (2018) 26364–26370.
  31. L. Xu, L. Yang, E.M. Johansson, Y. Wang, P. Jin, Photocatalytic activity and mechanism of bisphenol a removal over TiO2–x/rGO nanocomposite driven by visible light, Chem. Eng. J., 350 (2018) 1043–1055.
  32. X. Zhang, X. Huang, M. Xue, X. Ye, W. Lei, H. Tang, C. Li, Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres, Mater. Lett., 148 (2015) 67–70.
  33. X. Hou, Z. Wang, G. Fan, H. Ji, S. Yi, T. Li, Y. Wang, Z. Zhang, L. Yuan, R. Zhang, J. Sun, D. Chen, Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylaminesensing applications with high sensitivity and selectivity, Sens. Actuators, B, 317 (2020) 128236, doi: 10.1016/j.snb.2020.128236.
  34. G. Deokar, D. Vignaud, R. Arenal, P. Louette, J.-F. Colomer, Synthesis and characterization of MoS2 nanosheets, Nanotechnology, 27 (2016) 075604, doi: 10.1088/0957-4484/27/7/075604.
  35. Y. Lv, H. Pan, J. Lin, Z. Chen, Y. Li, H. Li, M. Shi, R. Yin, S. Zhu, One-pot hydrothermal approach towards 2D/2D heterostructure based on 1T MoS2 chemically bonding with GO for extremely high electrocatalytic performance, Chem. Eng. J., 428 (2022) 132072, doi: 10.1016/j.cej.2021.132072.
  36. X. Li, S. Guo, W. Li, X. Ren, J. Su, Q. Song, A.J. Sobrido, B. Wei, Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution, Nano Energy, 57 (2019) 388–397.
  37. W. Li, S. Zhang, G. Chen, Y. Hua, Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite, Appl. Energy, 126 (2014) 136–141.
  38. E. Lacasa, P. Cañizares, J. Llanos, M.A. Rodrigo, Removal of nitrates by electrolysis in non-chloride media: effect of the anode material, Sep. Purif. Technol., 80 (2011) 592–599.
  39. Y. Yang, H. Liu, The mechanisms of ozonation for ammonia nitrogen removal: an indirect process, J. Environ. Chem. Eng., 10 (2022) 108525, doi: 10.1016/j.jece.2022.108525.
  40. C. Yin, T. Ye, Y. Yu, W. Li, Q. Ren, Detection of hydroxyl radicals in sonoelectrochemical system, Microchem. J., 144 (2019) 369–376.
  41. D.E. Kissel, M. Cabrera, S. Paramasivam, Ammonium, Ammonia, and Urea Reactions in Soils, J.S. Schepers, W.R. Raun, Eds., Nitrogen in Agricultural Systems, Agronomy Monographs, Vol. 49, 2008, pp. 101–155.
    doi: 10.2134/agronmonogr49.c4
  42. H.-Y. Ma, L. Zhao, L.-H. Guo, H. Zhang, F.-J. Chen, W.-C. Yu, Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV, J. Hazard. Mater., 369 (2019) 719–726.
  43. Y. Liu, J. Xie, C.N. Ong, C.D. Vecitis, Z. Zhou, Electrochemical wastewater treatment with carbon nanotube filters coupled with in-situ generated H2O2, Environ. Sci. Water Res. Technol., 1 (2015) 769–778.
  44. D. Raptis, A. Ploumistos, E. Zagoraiou, E. Thomou, M. Daletou, L. Sygellou, D. Tasis, P. Lianos, Co-N doped reduced graphene oxide as oxygen reduction electrocatalyst applied to photocatalytic fuel cells, Catal. Today, 315 (2018) 31–35.
  45. K. Zhao, J. Bai, Q. Zeng, Y. Zhang, J. Li, L. Li, L. Xia, B. Zhou, Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes, J. Hazard. Mater., 337 (2017) 47–54.
  46. M. Li, Y. Liu, L. Dong, C. Shen, F. Li, M. Huang, C. Ma, B. Yang, X. An, W. Sand, Recent advances on photocatalytic fuel cell for environmental applications—the marriage of photocatalysis and fuel cells, Sci. Total Environ., 668 (2019) 966–978.