References

  1. Z. Runjie, G. Chunyu, Z. Shiwen, Q. Yue, T. Lili, F. Baorong, Response mechanism of water ecosystem under the influence of urbanization: a case study of the connection zone between Shenyang and Fushun, Meteorol. Environ. Res., 9 (2018) 15–18.
  2. N. Mehrdadi, F.G. Kootenaei, An investigation on effect of ultrasound waves on sludge treatment, Energy Procedia, 153 (2018) 325–329.
  3. H. Guo, Y. Wang, L. Tian, W. Wei, T. Zhu, Y. Liu, Unveiling the mechanisms of a novel polyoxometalates (POMs)-based pretreatment technology for enhancing methane production from waste activated sludge, Bioresour. Technol., 342 (2021) 125934, doi: 10.1016/j.biortech.2021.125934.
  4. J. Zhang, D. Xu, G. Zhang, Z. Ren, Y. Zhu, Critical review on ultrasound lysis-cryptic growth for sludge reduction, J. Environ. Chem. Eng., 9 (2021) 106263, doi: 10.1016/j. jece.2021.106263.
  5. P.E.E. Maye, Y. Jingyi, Y. Taoyan, X. Xinru, Study on the modification of vacuum residue by ultrasonic radiation, China Pet. Process. Petrochemical Technol., 19 (2017) 114–122.
  6. X. Zhang, X. Zheng, P. Han, Z. Liu, L. Chang, Effects of ultrasound on the desulfurization performance of hot coal gas over Zn-Mn-Cu supported on semi-coke sorbent prepared by high-pressure impregnation method, J. Energy Chem., 24 (2015) 291–298.
  7. Ł. Skórkowski, E. Zielewicz, A. Kawczyński, B. Gil, Assessment of excess sludge ultrasonic, mechanical and hybrid pretreatment in relation to the energy parameters, Water, 10 (2018) 551, doi: 10.3390/w10050551.
  8. A.P. Bhat, P.R. Gogate, Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: a review, J. Environ. Chem. Eng., 9 (2021) 104743, doi: 10.1016/j.jece.2020.104743.
  9. D. Yuan, X. Zhou, W. Jin, W. Han, H. Chi, W. Ding, Y. Huang, Z. He, S. Gao, Q. Wang, Effects of the combined utilization of ultrasonic/hydrogen peroxide on excess sludge destruction, Water, 13 (2021) 266, doi: 10.3390/w13030266.
  10. A. Xu, G. Zhang, Y. Ying, C. Wang, Complex fields in heterogeneous materials under shock: modeling, simulation and analysis, Sci. China Phys., Mech. Astron., 59 (2016) 1–49.
  11. M. Ahmadi Khoshooei, Thermal probe of vapor–liquid thermodynamic equilibrium, J. Therm. Anal. Calorim., 147 (2022) 6015–6034.
  12. M.S. Plesset, R.B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary, J. Fluid Mech., 47 (1971) 283–290.
  13. Y. Sun, J. Xiang, M. Liang, S. Huang, Y. Mao, Research on the influence factors of ultrasonic cavitation on particle breakage, J. Zhejiang Univ. Technol., 47 (2019) 146–150+157.
  14. R. D’Ambrosio, C. Scalone, Two-step Runge–Kutta methods for stochastic differential equations, Appl. Math. Comput., 403 (2021) 125930, doi: 10.1016/j.amc.2020.125930.
  15. K.A. Koroche, Numerical solution of first order ordinary differential equation by using Runge–Kutta method, Int. J. Syst. Sci. Appl. Math., 6 (2021) 1–8.
  16. P. Cao, C. Hao, C. Ma, H. Yang, R. Sun, Physical field simulation of the ultrasonic radiation method: an investigation of the vessel, probe position and power, Ultrason. Sonochem., 76 (2021) 105626, doi: 10.1016/j.ultsonch.2021.105626.
  17. S.W. Fong, E. Klaseboer, C.K. Turangan, B.C. Khoo, K.C. Hung, Numerical analysis of a gas bubble near
    bio-materials in an ultrasound field, Ultrasound Med. Biol., 32 (2006) 925–942.
  18. M. Mendonck, S. Aparicio, C. González Díaz, M.G. Hernández, G.M. Muñoz Caro, J.J. Anaya, S. Cazaux, Ultrasonic propagation in liquid and ice water drops. effect of porosity, Sensors, 21 (2021) 4790, doi: 10.3390/s21144790.
  19. L. Xuefeng, The Study of Sound Field Characteristics and its Corresponding Distribution Regularities in Continuous-Flow Ultrasonic Reactors, South China University of Technology, 2015.
  20. Y. Asakura, K. Yasuda, Frequency and power dependence of ultrasonic degassing, Ultrason. Sonochem., 82 (2022) 105890, doi: 10.1016/j.ultsonch.2021.105890.
  21. G.S.B. Lebon, I. Tzanakis, G. Djambazov, K. Pericleous, D.G. Eskin, Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model, Ultrason. Sonochem., 37 (2017) 660–668.
  22. J. Liang, X. Wu, Y. Qiao, Dynamics of twin bubbles formed by ultrasonic cavitation in a liquid, Ultrason. Sonochem., 80 (2021) 105837, doi: 10.1016/j.ultsonch.2021.105837.
  23. L. Ye, X. Zhu, Y. Liu, Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution, Ultrason. Sonochem., 59 (2019) 104744, doi: 10.1016/j.ultsonch.2019.104744.
  24. X. Guo, Y. Yang, X. Li, Z. Zhou, S. Ji, X. Han, S. Wang, Q. Zeng, H. Zhan, Measurement and visualization of ultrasonic cavitation field based on MATLAB, China Environ. Sci., 36 (2016) 719–726.
  25. M. Wang, D. Zheng, J. Dong, Y. Xu, Comparison of ultrasonic attenuation models for small droplets measurement based on numerical simulation and experiment, Appl. Acoust., 183 (2021) 108334, doi: 10.1016/j.apacoust.2021.108334.
  26. H. Dong, X. Yang, J. Tang, Y. Lü, G. Yue, Ultrasound intensity distribution measurement using a thermoelectric probe, J. Harbin Eng. Univ., 33 (2012) 911–915.