References
- Z. Runjie, G. Chunyu, Z. Shiwen, Q. Yue, T. Lili, F. Baorong,
Response mechanism of water ecosystem under the influence
of urbanization: a case study of the connection zone between
Shenyang and Fushun, Meteorol. Environ. Res., 9 (2018) 15–18.
- N. Mehrdadi, F.G. Kootenaei, An investigation on effect of
ultrasound waves on sludge treatment, Energy Procedia,
153 (2018) 325–329.
- H. Guo, Y. Wang, L. Tian, W. Wei, T. Zhu, Y. Liu, Unveiling
the mechanisms of a novel polyoxometalates (POMs)-based
pretreatment technology for enhancing methane production
from waste activated sludge, Bioresour. Technol., 342 (2021)
125934, doi: 10.1016/j.biortech.2021.125934.
- J. Zhang, D. Xu, G. Zhang, Z. Ren, Y. Zhu, Critical review
on ultrasound lysis-cryptic growth for sludge reduction,
J. Environ. Chem. Eng., 9 (2021) 106263, doi: 10.1016/j.
jece.2021.106263.
- P.E.E. Maye, Y. Jingyi, Y. Taoyan, X. Xinru, Study on the
modification of vacuum residue by ultrasonic radiation,
China Pet. Process. Petrochemical Technol., 19 (2017) 114–122.
- X. Zhang, X. Zheng, P. Han, Z. Liu, L. Chang, Effects of
ultrasound on the desulfurization performance of hot coal
gas over Zn-Mn-Cu supported on semi-coke sorbent prepared
by high-pressure impregnation method, J. Energy Chem.,
24 (2015) 291–298.
- Ł. Skórkowski, E. Zielewicz, A. Kawczyński, B. Gil, Assessment
of excess sludge ultrasonic, mechanical and hybrid
pretreatment in relation to the energy parameters, Water,
10 (2018) 551, doi: 10.3390/w10050551.
- A.P. Bhat, P.R. Gogate, Cavitation-based pre-treatment
of wastewater and waste sludge for improvement in the
performance of biological processes: a review, J. Environ. Chem.
Eng., 9 (2021) 104743, doi: 10.1016/j.jece.2020.104743.
- D. Yuan, X. Zhou, W. Jin, W. Han, H. Chi, W. Ding, Y. Huang,
Z. He, S. Gao, Q. Wang, Effects of the combined utilization of
ultrasonic/hydrogen peroxide on excess sludge destruction,
Water, 13 (2021) 266, doi: 10.3390/w13030266.
- A. Xu, G. Zhang, Y. Ying, C. Wang, Complex fields in
heterogeneous materials under shock: modeling, simulation
and analysis, Sci. China Phys., Mech. Astron., 59 (2016) 1–49.
- M. Ahmadi Khoshooei, Thermal probe of vapor–liquid
thermodynamic equilibrium, J. Therm. Anal. Calorim.,
147 (2022) 6015–6034.
- M.S. Plesset, R.B. Chapman, Collapse of an initially spherical
vapour cavity in the neighbourhood of a solid boundary,
J. Fluid Mech., 47 (1971) 283–290.
- Y. Sun, J. Xiang, M. Liang, S. Huang, Y. Mao, Research on the
influence factors of ultrasonic cavitation on particle breakage,
J. Zhejiang Univ. Technol., 47 (2019) 146–150+157.
- R. D’Ambrosio, C. Scalone, Two-step Runge–Kutta methods
for stochastic differential equations, Appl. Math. Comput.,
403 (2021) 125930, doi: 10.1016/j.amc.2020.125930.
- K.A. Koroche, Numerical solution of first order ordinary
differential equation by using Runge–Kutta method, Int. J. Syst.
Sci. Appl. Math., 6 (2021) 1–8.
- P. Cao, C. Hao, C. Ma, H. Yang, R. Sun, Physical field simulation
of the ultrasonic radiation method: an investigation of the
vessel, probe position and power, Ultrason. Sonochem.,
76 (2021) 105626, doi: 10.1016/j.ultsonch.2021.105626.
- S.W. Fong, E. Klaseboer, C.K. Turangan, B.C. Khoo, K.C. Hung,
Numerical analysis of a gas bubble near
bio-materials in an
ultrasound field, Ultrasound Med. Biol., 32 (2006) 925–942.
- M. Mendonck, S. Aparicio, C. González Díaz, M.G. Hernández,
G.M. Muñoz Caro, J.J. Anaya, S. Cazaux, Ultrasonic propagation
in liquid and ice water drops. effect of porosity, Sensors,
21 (2021) 4790, doi: 10.3390/s21144790.
- L. Xuefeng, The Study of Sound Field Characteristics and its
Corresponding Distribution Regularities in Continuous-Flow
Ultrasonic Reactors, South China University of Technology,
2015.
- Y. Asakura, K. Yasuda, Frequency and power dependence of
ultrasonic degassing, Ultrason. Sonochem., 82 (2022) 105890,
doi: 10.1016/j.ultsonch.2021.105890.
- G.S.B. Lebon, I. Tzanakis, G. Djambazov, K. Pericleous,
D.G. Eskin, Numerical modelling of ultrasonic waves in a
bubbly Newtonian liquid using a high-order acoustic cavitation
model, Ultrason. Sonochem., 37 (2017) 660–668.
- J. Liang, X. Wu, Y. Qiao, Dynamics of twin bubbles formed
by ultrasonic cavitation in a liquid, Ultrason. Sonochem.,
80 (2021) 105837, doi: 10.1016/j.ultsonch.2021.105837.
- L. Ye, X. Zhu, Y. Liu, Numerical study on dual-frequency
ultrasonic enhancing cavitation effect based on bubble
dynamic evolution, Ultrason. Sonochem., 59 (2019) 104744,
doi: 10.1016/j.ultsonch.2019.104744.
- X. Guo, Y. Yang, X. Li, Z. Zhou, S. Ji, X. Han, S. Wang, Q. Zeng,
H. Zhan, Measurement and visualization of ultrasonic cavitation
field based on MATLAB, China Environ. Sci., 36 (2016)
719–726.
- M. Wang, D. Zheng, J. Dong, Y. Xu, Comparison of ultrasonic
attenuation models for small droplets measurement based
on numerical simulation and experiment, Appl. Acoust.,
183 (2021) 108334, doi: 10.1016/j.apacoust.2021.108334.
- H. Dong, X. Yang, J. Tang, Y. Lü, G. Yue, Ultrasound intensity
distribution measurement using a thermoelectric probe,
J. Harbin Eng. Univ., 33 (2012) 911–915.