References

  1. W.-D. Oh, Z. Dong, T.-T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects, Appl. Catal., B, 194 (2016) 169–201.
  2. L. Hu, X. Yang, S. Dang, An easily recyclable Co/SBA-15 catalyst: heterogeneous activation of peroxymonosulfate for the degradation of phenol in water, Appl. Catal., B, 102 (2011) 19–26.
  3. Y. Wang, H. Sun, X. Duan, H.M. Ang, M.O. Tadé, S. Wang, A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol, Appl. Catal., B, 172–173 (2015) 73–81.
  4. J. Liu, Z. Zhao, P. Shao, F. Cui, Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation, Chem. Eng. J., 262 (2015) 854–861.
  5. Y. Yang, J.J. Pignatello, J. Ma, W.A. Mitch, Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs), Environ. Sci. Technol., 48 (2014) 2344–2351.
  6. H. Wang, W. Guo, B. Liu, Q. Wu, H. Luo, Q. Zhao, Q. Si, F. Sseguya, N. Ren, Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism, Water Res., 160 (2019) 405–414.
  7. S. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (2008) 714–720.
  8. S.B. Hammouda, F. Zhao, Z. Safaei, V. Srivastava, D. Lakshmi Ramasamy, S. Iftekhar, S. Kalliola, M. Sillanpää, Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): characterization, kinetics and mechanism study, Appl. Catal., B, 215 (2017) 60–73.
  9. P.A. George, D.D. Dionysios, Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt, Environ. Sci. Technol., 37 (2003) 4790–4797.
  10. Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: structure dependence and mechanism, Appl. Catal., B, 164 (2015) 159–167.
  11. E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tade, S. Wang, Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation, Environ. Sci. Technol., 47 (2013) 5882–5887.
  12. P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal., B, 181 (2016) 103–117.
  13. S. Wang, H. Sun, H.M. Ang, M.O. Tadé, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials, Chem. Eng. J., 226 (2013) 336–347.
  14. T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, Adsorption of methylene blue from aqueous solution by graphene, Colloids Surf., B, 90 (2012) 197–203.
  15. D. Lin, B. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
  16. W. Tian, H. Zhang, X. Duan, H. Sun, M.O. Tade, H.M. Ang, S. Wang, Nitrogen- and sulfur-co-doped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants, ACS Appl. Mater. Interfaces, 8 (2016) 7184–7193.
  17. X. Duan, Z. Ao, H. Sun, S. Indrawirawan, Y. Wang, J. Kang, F. Liang, Z.H. Zhu, S. Wang, Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis, ACS Appl. Mater. Interfaces, 7 (2015) 4169–4178.
  18. Y. Qian, X. Guo, Y. Zhang, Y. Peng, P. Sun, C.H. Huang, J. Niu, X. Zhou, J.C. Crittenden, Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation, Environ. Sci. Technol., 50 (2016) 772–781.
  19. S. Indrawirawan, H. Sun, X. Duan, S. Wang, Low temperature combustion synthesis of nitrogen-doped graphene for metalfree catalytic oxidation, J. Mater. Chem. A, 3 (2015) 3432–3440.
  20. S. Yang, L. Li, T. Xiao, Y. Zhang, D. Zheng, Promoting effect of ammonia modification on activated carbon catalyzed peroxymonosulfate oxidation, Sep. Purif. Technol., 160 (2016) 81–88.
  21. H. Cheng, E. Hu, Y. Hu, Impact of mineral micropores on transport and fate of organic contaminants: a review, J. Contam. Hydrol., 129–130 (2012) 80–90.
  22. P. Shah, A. Unnarkat, F. Patel, M. Shah, P. Shah, A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation, Process Saf. Environ. Prot., 161 (2022) 703–722.
  23. P. Ahuja, S.K. Ujjain, R. Kanojia, P. Attri, Transition metal oxides and their composites for photocatalytic dye degradation, J. Compos. Sci., 5 (2021) 683–711.
  24. K. Zhang, K.M. Parker, Halogen radical oxidants in natural and engineered aquatic systems, Environ. Sci. Technol., 52 (2018) 9579–9594.
  25. M. Wang, W. Zhen, B. Tian, J. Ma, G. Lu, The inhibition of hydrogen and oxygen recombination reaction by halogen atoms on over-all water splitting over Pt-TiO2 photocatalyst, Appl. Catal., B, 236 (2018) 240–252.
  26. Y. Tu, W. Tang, Y. Li, J. Pu, J. Liao, W. Wu, S. Tian, Insights into the implication of halogen ions on the photoactivity of dissolved black carbon for the degradation of pharmaceutically active compounds, Sep. Purif. Technol., 300 (2022) 121–765.
  27. Z. Huang, H. Bao, Y. Yao, W. Lu, W. Chen, Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst, Appl. Catal., B, 154–155 (2014) 36–43.
  28. H.T. Pham, K. Suto, C. Inoue, Trichloroethylene transformation in aerobic pyrite suspension: pathways and kinetic modeling, Environ. Sci. Technol., 43 (2009) 6744–6749.
  29. T.T. Tsai, C.M. Kao, T.Y. Yeh, M.S. Lee, Chemical oxidation of chlorinated solvents in contaminated groundwater: review, Pract. Period. Hazard. Toxic Radioact. Waste Manage., 12 (2008) 116–126.
  30. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 28 (2004) 3705–3712.
  31. S. Chen, J. Hu, L. Lu, L. Wu, Z. Liang, J. Tang, H. Hou, S. Liang, J. Yang, Iron porphyrin-TiO2 modulated peroxymonosulfate activation for efficient degradation of 2,4,6-trichlorophenol with high-valent iron-oxo species, Chemosphere, 309 (2022) 136744, doi: 10.1016/j.chemosphere.2022.136744.
  32. D. Ouyang, Y. Chen, J. Yan, L. Qian, L. Han, M. Chen, Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures, Chem. Eng. J., 370 (2019) 614–624.
  33. H. Li, C. Shan, W. Li, B. Pan, Peroxymonosulfate activation by iron(III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex, Water Res., 147 (2018) 233–241.
  34. D.S. Su, S. Perathoner, G. Centi, Nanocarbons for the development of advanced catalysts, Chem. Rev., 113 (2013) 5782–5816.
  35. D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlogl, Metal-free heterogeneous catalysis for sustainable chemistry, ChemSusChem, 3 (2010) 169–180.
  36. H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene, J. Mater. Chem., 21 (2011) 3335–3345.
  37. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Toward N-doped graphene via solvothermal synthesis, Chem. Mater., 23 (2011) 1188–1193.
  38. Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D.S. Su, J. Wang, X. Bao, D. Ma, Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation, Angew. Chem. Int. Ed. Engl., 52 (2013) 2109–2113.
  39. D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, 351 (2016) 361–365.
  40. P. Liang, C. Zhang, X. Duan, H. Sun, S. Liu, M.O. Tade, S. Wang, An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate, Environ. Sci.: Nano, 4 (2017) 315–324.
  41. K. Zhou, W. Zhou, X. Liu, Y. Wang, J. Wan, S. Chen, Nitrogen self-doped porous carbon from surplus sludge as metal-free electrocatalysts for oxygen reduction reactions, ACS Appl. Mater. Interfaces, 6 (2014) 14911–14918.
  42. H. Sun, S. Liu, G. Zhou, H.M. Ang, M.O. Tade, Wang, S. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, ACS Appl. Mater. Interfaces, 4 (2012) 5466–5471.
  43. X. Duan, Z. Ao, H. Sun, S. Indrawirawan, Y. Wang, J. Kang, F. Liang, Z.H. Zhu, S. Wang, Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis, ACS Appl. Mater. Interfaces, 7 (2015) 4169–4178.
  44. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21 (2011) 8038–8044.
  45. J. Long, X. Xie, J. Xu, Q. Gu, L. Chen, X. Wang, Nitrogendoped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols, ACS Catal., 2 (2012) 622–631.
  46. Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.Y. Pang, J. Li, X.T. Lu, L.P. Yuan, Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process, Environ. Sci. Technol., 49 (2015) 12941–12950.
  47. D. Zhou, L. Chen, C. Zhang, Y. Yu, L. Zhang, F. Wu, A novel photochemical system of ferrous sulfite complex: kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions, Water Res., 57 (2014) 87–95.
  48. Z.J. Lu, S.J. Bao, Y.T. Gou, C.J. Cai, C.C. Ji, M.W. Xu, J. Song, R. Wang, Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells, RSC Adv., 3 (2013) 3990–3995.
  49. D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogendoped graphene, Energy Environ. Sci., 4 (2011) 760–764.
  50. T.C. Nagaiah, S. Kundu, M. Bron, M. Muhler, W. Schuhmann, Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium, Electrochem. Commun., 12 (2010) 338–341.
  51. L. Zhang, J. Niu, M. Li, Z. Xia, Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells, J. Phys. Chem., 118 (2014) 3545–3553.
  52. T. Enoki, S. Fujii, K. Takai, Zigzag and armchair edges in graphene, Carbon, 50 (2012) 3141–3145.
  53. G. Lee, K. Cho, Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation, Phys. Rev. B, 79 (2009) 165440, doi: 10.1103/PhysRevB.79.165440.
  54. J. Chen, X.W. Dong, S.S. Cao, L.Y. Zhu, Z.H. Song, J. Jin, H.X. Yang, Preparation of activated carbon from sludge by ‘double green activation’ and adsorption capacity for Congo red dye, Desal. Water Treat., 249 (2022) 61–73.
  55. J. Chen, L.Y. Zhu, S.S. Cao, Z.H. Song, X.H. Yang, J. Jin, Z.M. Chen, Activating peroxymonosulfate using carbon from cyanobacteria as support for zero-valent iron, Environ. Sci. Pollut. Res., 29 (2022) 73353–73364.
  56. R.V. Khose, K.D. Lokhande, M.A. Bhakare, P.S. Dhumal, P.H. Wadekar, S. Some, Boron nitride doped chitosan functionalized graphene for an efficient dye degradation, Chem. Select, 6 (2021) 7956–7963.