References

  1. S. Singh, V.C. Srivastava, I.D. Mall, Fixed-bed study for adsorptive removal of furfural by activated carbon, Colloids Surf., A, 332 (2009) 50–56.
  2. W.D. Yang, P.L. Li, D.C. Bo, H.Y. Chang, The optimization of formic acid hydrolysis of xylose in furfural production, Carbohydr. Res., 357 (2012) 53–61.
  3. EPA, Pesticide Fact Sheet (Office of Prevention, Pesticide and Toxic Substance), Contract No: 7505P, U.S. Environmental Protection Agency, 2006.
  4. OSHA, Occupational Safety and Health Guideline, Labor USD, Washington D.C., 1992.
  5. R.N. Ghazy, I.K. Shakir, Furfural removal from refinery wastewater by adsorption on commercial activated carbon, J. Pet. Res. Stud., 12 (2022) 116–136.
  6. A.S. Alsaqqar, M.S. Salman, W.M. Abood, D.F. Ali, Furfural degradation in wastewater by advanced oxidation process using UV/H2O2, Iraqi J. Chem. Pet. Eng., 16 (2015) 9–17.
  7. M.T. Khan, J. Krümpel, D. Wüst, A. Lemmer, Anaerobic degradation of individual components from
    5-hydroxymethylfurfural process-wastewater in continuously operated fixed bed reactors, Processes, 9 (2021) 677, doi: 10.3390/pr9040677.
  8. L.Y. Mao, L. Zhang, N.B. Gao, A.M. Li, FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue, Bioresour. Technol., 123 (2012) 324–331.
  9. M.R. Fahmi, C.Z.A. Abidin, N.R. Rahmat, Characteristic of Color and COD Removal of Azo Dye by Advanced Oxidation Process and Biological Treatment, 2011 International Conference on Biotechnology and Environment Management IPCBEE Vol. 18, IACSIT Press, Singapore, 16–18 Sept., 2011.
  10. T. Yang, A. Lua, Characteristics of activated carbons prepared from pistachio-nut shells by physical activation, J. Colloid Interface Sci., 267 (2003) 408–417.
  11. D. Mohan, C.U. Pittman, Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water, J. Hazard. Mater., 137 (2006) 762–811.
  12. M.F. Abid, H.S. Yasser, A.H. Bilal, T.J. Farah, Glucose production from Iraqi date-palm empty fruit fibers, J. Xian Univ. Archit. Technol., XII (2020) 124–141.
  13. W. Chen, R. Parette, J. Zou, F.S. Cannon, B.A. Dempsey, Arsenic removal by iron-modified activated carbon, Water Res., 41 (2007) 1851–1858.
  14. V. Fierro, G.C. Muniz, G. Gonzalez, M.L. Ballinas, A. Celzard, Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis, J. Hazard. Mater., 168 (2009) 430–437.
  15. A.M. Cooper, K.D. Hristovski, T. Möller, P. Westerhoff, P. Sylvester, The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr) oxide nanoparticle-impregnated granulated activated carbons, J. Hazard. Mater., 183 (2010) 381–388.
  16. Z. Wang, M. Shi, J. Li, Z. Zheng, Influence of moderate preoxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon, J. Environ. Sci., 26 (2014) 519–528.
  17. A. Chatla, I.W. Almanassra, L. Jaber, V. Kochkodan, T. Laoui, H. Alawadhi, M.A. Atieh, Influence of calcination atmosphere on Fe-doped activated carbon for the application of lead removal from water, Colloids Surf., A, 652 (2022) 129928, doi: 10.1016/j.colsurfa.2022.129928.
  18. A. Soudani, L. Youcef, L. Bulgariu, S. Youcef, K. Toumi, N. Soudani, Characterizing and modeling of oak fruit shells biochar as an adsorbent for the removal of Cu, Cd, and Zn in single and in competitive systems, Chem. Eng. Res. Des., 188 (2022) 972–987.
  19. S. Praveen, J. Jegan, T.B. Pushpa, R. Gokulan, L. Bulgariu, Biochar for removal of dyes in contaminated water: an overview, Biochar, 4 (2022) 3–16.
  20. K. Krishnaiah, P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI Learning Private Limited, New Delhi, 2012.
  21. P. Lodeiro, J.L. Barriada, R. Herrero, M.E.S. de Vicente, The marine macroalga Cystoseira baccata as biosorbent for Cd(II) and Pb(II) removal: kinetic and equilibrium studies, Environ. Pollut., 142 (2006) 264–273.
  22. A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, FTIR studies of nitrogen doped carbon nanotubes, Diamond Relat. Mater., 15 (2006) 385–388.
  23. S.H. Park, S. McClain, Z.R. Tian, S.L. Suib, C. Karwacki, Surface and bulk measurements of metals deposited on activated carbon, Chem. Mater., 9 (1997) 176–183.
  24. A.A. Attia, W.E. Rashwan, S.A. Khedr, Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment, Dyes Pigm., 69 (2006) 128–136.
  25. G. Calzaferri, R. Imhof, In-situ attenuated total reflection FTIR investigations of H2O, HSiCl3 and Co2(CO)8 on ZnSe in the range 600–4,000 cm–1, Spectrochim. Acta, Part A, 52 (1996) 23–28.
  26. J. Guo, A. Lua, Textural and chemical characterizations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation, Microporous Mesoporous Mater., 32 (1999) 111–117.
  27. R. Lapuente, F. Cases, P. Garcés, E. Morallón, J.L. Vázquez, A voltammeter and FTIR–ATR study of the electro polymerization of phenol on platinum electrodes in carbonate medium: influence of sulfide, J. Electroanal. Chem., 451 (1998) 163–171.
  28. A.S. Yasin, J. Jeong, I.M.A. Mohamed, C.H. Park, C.S. Kim, Fabrication of N-doped and SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization, J. Alloys Compd., 729 (2017) 764–775.
  29. I.M.A. Mohamed, A.S. Yasin, C. Liu, Synthesis, surface characterization and electrochemical performance of ZnO/activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes, Ceram. Int., 46 (2020) 3912–3920.
  30. A.K. Sahu, V.C. Srivastava, I.D. Mall, D.H. Lataye, Adsorption of furfural from aqueous solution onto activated carbon: kinetic, equilibrium and thermodynamic study, Sep. Sci. Technol., 43 (2008) 1239–1259.
  31. M. Fazlzadeh, M. Ansarizadeh, M. Leili, Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract, Data Brief, 16 (2018) 341–345.
  32. P. Parpot, A.P. Bettencourt, G. Chamoulaud, K.B. Kokoh, E.M. Belgsir, Electrochemical investigations of the oxidationreduction of furfural in aqueous medium: application to electrosynthesis, Electrochim. Acta, 49 (2004) 397–403.
  33. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  34. I. Langmuir, The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 39 (1917) 1848–1906.
  35. A.A. Sabri, T.M. Albayati, R.A. Alazawi, Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue, Korean J. Chem. Eng., 32 (2015) 1835–1841.
  36. Y. Yao, B. He, X. Feifei, C. Xiaofeng, Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes, Chem. Eng. J., 170 (2011) 82–89.
  37. I.H. Khalaf, F.T. Al-Sudani, A.A. AbdulRazak, T. Aldahri, S. Rohani, Optimization of Congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach, Water Sci. Technol., 83 (2021) 1369–1383.
  38. G.I. Danmaliki, T.A. Saleh, Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon, Chem. Eng. J., 307 (2017) 914–927.
  39. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24 (1898) 1–39.
  40. A.A. AbdulRazak, S. Rohani, Sodium dodecyl sulfate modified Fe2O3/molecular sieves for removal of rhodamine B dyes, Adv. Mater. Sci. Eng., 10 (2018) 1–10.
  41. B. An, Cu(II) and As(V) adsorption kinetic characteristic of the multifunctional amino groups in chitosan, Processes, 8 (2020) 1194–1209.
  42. L. Radia, B. Oumessaad, A. Hamitouche, D. André, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol., 36 (2018) 1–34.
  43. M. Jain, Y. Mithilesh, K. Tomas, K.G. Vinod, S. Mika, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind., 20 (2018) 54–74.