References

  1. A. Das, M.K. Adak, Photo-catalyst for wastewater treatment: a review of modified Fenton, and their reaction kinetics, Appl. Surf. Sci. Adv., 11 (2022) 100282, doi: 10.1016/j.apsadv.2022.100282.
  2. D.X. Gao, H.T. Yang, Z. Shu, The preparation of Ag@AgCl photocatalytic material based on the photocatalysis material CA+ and degradation of tetracycline, J. Exp. Nanosci., 18 (2023) 2162509, doi: 10.1080/17458080.2022.2162509.
  3. K.F. Rodrigues, N.P. de Moraes, A.S. dos Santos, T.L. do Amaral Montanheiro, T.M.B. Campos, G.P. Thim, L.A. Rodrigues, D.D. Brunelli, Enhanced 4-chlorophenol degradation under visible and solar radiation through TiO2/g-C3N4 Z-scheme heterojunction, Biointerface Res. Appl. Chem., 13 (2023) 1–18.
  4. H. Takashi, K. Jun, D. Kazunari, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43 (2014) 7520–7535.
  5. D. Kandi, S. Martha, K.M. Parida, Quantum dots as enhancer in photocatalytic hydrogen evolution: a review, Int. J. Hydrogen Energy, 42 (2017) 9467–9481.
  6. Y. Yang, S.H. Zhao, F.K. Bi, J.F. Chen, Y.X. Wang, L.F. Cui, J.C. Xu, X.D. Zhang, Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: the crucial roles of interface defects and band structure, Appl. Catal., B, 315 (2022) 121550, doi: 10.1016/j.apcatb.2022.121550.
  7. Y. Yang, S.H. Zhao, F.K. Bi, J.F. Chen, Y.T. Li, L.F. Cui, J.C. Xu, X.X. Zhang, Oxygen-vacancy-induced O2 activation and electron-hole migration enhance photothermal catalytic toluene oxidation, Cell Rep. Phys. Sci., 3 (2022) 101011, doi: 10.1016/j.xcrp.2022.101011.
  8. J.F. Chen, Y. Yang, S.G. Zhao, F.K. Bi, L. Song, N. Liu, J.C. Xu, Y.X. Wang, X.D. Zhang, Stable black phosphorus encapsulation in porous mesh-like UiO-66 promoted charge transfer for photocatalytic oxidation of toluene and o-dichlorobenzene: performance, degradation pathway, and mechanism, ACS Catal., 12 (2022) 8069–8081.
  9. R.F. Peng, S. Zhang, Y.Y. Yao, J.N. Wang, X.F. Zhu, R. Jiang, J.H. Zhang, W. Zhang, C.H. Wang, MOFs meet electrospinning: new opportunities for water treatment, J. Environ. Sci., 453 (2022) 139669, doi: 10.1016/j.cej.2022.139669.
  10. X.Q. Dai, L. Chen, Z.Y. Li, X.J. Li, J.F. Wang, X. Hu, L.H. Zhao, Y.M. Jia, S.X. Sun, Y. Wu, Y.M. He,
    CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation, J. Colloid Interface Sci., 603 (2021) 220–232.
  11. L. Chen, X.Q. Dai, X.J. Li, J.F. Wang, H.F. Chen, X. Hu, H.J. Lin, Y.M. He, Y. Wu, M.H. Fan, A novel
    Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation, J. Mater. Chem. A, 9 (2021) 13344–13354.
  12. S. Zheng, X.J. Li, J.Y. Zhang, J.F. Wang, C.R. Zhao, X. Hu, Y. Wu, Y.M. He, One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of Rhodamine B under ultrasonic vibration, J. Environ. Sci., 125 (2023) 1–13.
  13. Q.L. Zhang, P.F. Chen, L. Chen, M.F. Wu, X.Q. Dai, P.X. Xing, H.J. Lin, L.H. Zhao, Y.M. He, Facile fabrication of novel Ag2S/K-g-C3N4 composite and its enhanced performance in photocatalytic H2 evolution, J. Colloid Interface Sci., 568 (2020) 117–129.
  14. T.S. Natarajan, R.J. Tayade, Direct dual CaIn2S4/Bi2WO5 semiconductor nanocomposites with efficient inter-crosssectional charge carrier transfer for enhanced visible light photocatalysis, J. Nanopart. Res., 23 (2021) 127, doi: 10.1007/s11051-021-05252-y.
  15. J.J. Ding, S. Sun, W.H. Yan, J. Bao, C. Gao, Photocatalytic H2 evolution on a novel CaIn2S4 photocatalyst under visible light irradiation, Int. J. Hydrogen Energy, 38 (2013) 13153–13158.
  16. S.Y. Xu, J. Dai, J. Yang, J. You, J.Y. Hao, Facile synthesis of novel CaIn2S4/ZnIn2S4 composites with efficient performance for photocatalytic reduction of Cr(VI) under simulated sunlight irradiation, Nanomaterials, 8 (2018) 472, doi: 10.3390/nano8070472.
  17. J.J. Ding, W.H. Yan, S. Sun, J. Bao, C. Gao, Hydrothermal synthesis of CaIn2S4-reduced graphene oxide nanocomposites with increased photocatalytic performance, ACS Appl. Mater. Interfaces, 6 (2014) 12877–12884.
  18. G.X. Cao, Y.B. Zhao, Z.S. Wu, Synthesis and characterization of In2S3 nanoparticles, J. Alloys Compd., 472 (2009) 325–327.
  19. X.L. Fu, X.X. Wang, Z.X. Chen, Z.Z. Zhang, Z.H. Li, Photocatalytic performance of tetragonal and cubic β-In2S3, for the water splitting under visible light irradiation, Appl. Catal., B, 95 (2010) 393–399.
  20. X.W. Wang, W.X. Liu, X.Q. Wang, D.H. Yu, H. Liu, Preparation of In2S3@TiO2 nanobelt heterostructures with high UV-Visible light photocatalytic activities, Sci. Adv. Mater., 7 (2015) 479–488.
  21. Y. Fang, S.R. Zhu, M.K. Wu, W.N. Zhao, L. Han, MOF-derived In2S3 nanorods for photocatalytic removal of dye and antibiotics, J. Solid State Chem., 266 (2018) 205–209.
  22. P. Zhang, L.N. Zhang, E.L. Dong, X. Zhang, W. Zhang, Synthesis of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light photocatalytic activity, J. Alloys Compd., 885 (2021) 161027, doi: 10.1016/j.jallcom.2021.161027.
  23. S. Yang, C.Y. Xu, B.Y. Zhang, L. Yang, S.P. Hu, L. Zhen, Ca(II) doped β-In2S3 hierarchical structures for photocatalytic hydrogen generation and organic dye degradation under visible light irradiation, J. Colloid Interface Sci., 491 (2017) 230–237.
  24. G.D. Liu, X.L. Jiao, Z.H. Qin, D.R. Chen, Solvothermal preparation and visible photocatalytic activity of polycrystalline β-In2S3 nanotubes, Cryst. Eng. Comm., 13 (2011) 182–187.
  25. Z. Zhou, Y.H. Li, K.L. Lv, X.F. Wu, Q. Li, J.M. Luo, Fabrication of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr(VI), Mater. Sci. Semicond. Process., 75 (2018) 334–341.
  26. J. Singha, R.K. Soni, J. Kim, Photocatalytic β-In2S3 nanoflowers synthesized by thermal assembly of In2S3 nanosheets, J. Alloys Compd., 911 (2022) 165099, doi: 10.1016/j.jallcom.2022.165099.
  27. I.J. Badovinac, R. Peter, A. Omerzu, K. Salamon, I. Šarić, A. Samaržija, M. Perčić, I.K. Piltaver, G. Ambrožić, M. Petravić, Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition, Thin Solid Films, 709 (2020) 138215, doi: 10.1016/j.tsf.2020.138215.
  28. J. Li, S.C. Meng, T.Y. Wang, Q. Xu, L.Q. Shao, D.L. Jiang, M. Chen, Novel Au/CaIn2S4 nanocomposites with plasmonenhanced photocatalytic performance under visible light irradiation, Appl. Surf. Sci., 396 (2016) 430–437.
  29. Y.H. He, D.Z. Li, G.G. Xiao, W. Chen, Y.B. Chen, A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation, J. Phys. Chem. C, 113 (2009) 5254–5262.
  30. P. Srivastava, N.L. Saini, B.R. Sekhar, K.B. Garg, Core-level photoemission study on a Bi-2212 single crystal, Mater. Sci. Eng., B, 22 (1994) 217–221.
  31. R.W. Hewitt, N. Winograd, Oxidation of polycrystalline indium studied by X‐ray photoelectron spectroscopy and static secondary ion mass spectroscopy, J. Appl. Phys., 51 (1980) 2620–2624.
  32. K. Okada, A. Kotani, B.T. Thole, Charge transfer satellites and multiplet splitting in X-ray photoemission spectra of late transition metal halides, J. Electron. Spectrosc. Relat. Phenom., 58 (1992) 325–343.
  33. M. Tekalgne, A. Hasani, Q.V. Le, T.P. Nguyen, K.S. Choi, CdSe quantum dots doped WS2 nanoflowers for enhanced solar hydrogen production, Phys. Status Solidi A, 216 (2019) 1800853, doi: 10.1002/pssa.201800853.
  34. S. Jasbinder, J. Heo, J. Mackenzie, R.M. Almeida, XPS study of non-bridging Se atoms in As2Se3-Tl2Se glasses, J. Non-Cryst. Solids, 101 (1988) 18–22.
  35. B. Silvia, Glossary of terms used in photochemistry, 3rd ed. (IUPAC Recommendations 2006), Pure Appl. Chem., 79 (2007) 239–465.
  36. F.K. Bi, Z.Y. Zhao, Y. Yang, W.K. Gao, N. Liu, Y.D. Huang, X.D. Zhang, Chlorine-coordinated Pd single atom enhanced the chlorine resistance for volatile organic compound degradation: mechanism study, Environ. Sci. Technol., 56 (2022) 17321–17330.
  37. S.M. Sun, W.Z. Wang, L. Zhang, Facile preparation of threedimensionally ordered macroporous Bi2WO6 with high photocatalytic activity, J. Mater. Chem., 22 (2012) 19244–19249.
  38. X.D. Zhang, Z.Y. Zhao, S.H. Zhao, S. Xiang, W.K. Gao, L. Wang, J.C. Xu, Y.X. Wang, The promoting effect of alkali metal and H2O on Mn-MOF derivatives for toluene oxidation: a combined experimental and theoretical investigation, J. Catal., 415 (2022) 218–235.
  39. J.J. Ning, K.K. Men, G.J. Xiao, L.Y. Zhao, L. Wang, B.B. Liu, B. Zou, Synthesis, optical properties and growth process of In2S3 nanoparticles, J. Colloid Interface Sci., 347 (2010) 172–176.
  40. P. Singh, B. Mohan, V. Madaan, R. Ranga, P. Kumari, S. Kumar, V. Bhankar, P. Kumar, K. Kumar, Nanomaterials photocatalytic activities for wastewater treatment: a review, Environ. Sci. Pollut. Res., 29 (2022) 69294–69326.
  41. R.J. Guo, R. Tian, D.L. Shi, H. Li, H.H. Liu, S-doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment, ACS Appl. Nano Mater., 12 (2019) 7755–7765.
  42. J. Kang, C.Y. Jin, Z.L. Li, M. Wang, Z.Q. Chen, Y.Z. Wang, Dual Z-scheme MoS2/g-C3N4/Bi24O31Cl10 ternary heterojunction photocatalysts for enhanced visible-light photodegradation of antibiotic, J. Alloys Compd., 825 (2020) 153975, doi: 10.1016/j.jallcom.2020.153975.