References
- A. Das, M.K. Adak, Photo-catalyst for wastewater treatment:
a review of modified Fenton, and their reaction kinetics,
Appl. Surf. Sci. Adv., 11 (2022) 100282, doi: 10.1016/j.apsadv.2022.100282.
- D.X. Gao, H.T. Yang, Z. Shu, The preparation of Ag@AgCl
photocatalytic material based on the photocatalysis material
CA+ and degradation of tetracycline, J. Exp. Nanosci., 18 (2023)
2162509, doi: 10.1080/17458080.2022.2162509.
- K.F. Rodrigues, N.P. de Moraes, A.S. dos Santos, T.L. do Amaral
Montanheiro, T.M.B. Campos, G.P. Thim, L.A. Rodrigues,
D.D. Brunelli, Enhanced 4-chlorophenol degradation under
visible and solar radiation through TiO2/g-C3N4 Z-scheme
heterojunction, Biointerface Res. Appl. Chem., 13 (2023) 1–18.
- H. Takashi, K. Jun, D. Kazunari, Recent advances in
semiconductors for photocatalytic and photoelectrochemical
water splitting, Chem. Soc. Rev., 43 (2014) 7520–7535.
- D. Kandi, S. Martha, K.M. Parida, Quantum dots as enhancer
in photocatalytic hydrogen evolution: a review, Int. J.
Hydrogen Energy, 42 (2017) 9467–9481.
- Y. Yang, S.H. Zhao, F.K. Bi, J.F. Chen, Y.X. Wang, L.F. Cui,
J.C. Xu, X.D. Zhang, Highly efficient photothermal catalysis
of toluene over Co3O4/TiO2 p-n heterojunction: the crucial
roles of interface defects and band structure, Appl. Catal., B,
315 (2022) 121550, doi: 10.1016/j.apcatb.2022.121550.
- Y. Yang, S.H. Zhao, F.K. Bi, J.F. Chen, Y.T. Li, L.F. Cui,
J.C. Xu, X.X. Zhang, Oxygen-vacancy-induced O2 activation
and electron-hole migration enhance photothermal catalytic
toluene oxidation, Cell Rep. Phys. Sci., 3 (2022) 101011,
doi: 10.1016/j.xcrp.2022.101011.
- J.F. Chen, Y. Yang, S.G. Zhao, F.K. Bi, L. Song, N. Liu, J.C. Xu,
Y.X. Wang, X.D. Zhang, Stable black phosphorus encapsulation
in porous mesh-like UiO-66 promoted charge transfer for
photocatalytic oxidation of toluene and o-dichlorobenzene:
performance, degradation pathway, and mechanism,
ACS Catal., 12 (2022) 8069–8081.
- R.F. Peng, S. Zhang, Y.Y. Yao, J.N. Wang, X.F. Zhu, R. Jiang,
J.H. Zhang, W. Zhang, C.H. Wang, MOFs meet electrospinning:
new opportunities for water treatment, J. Environ. Sci.,
453 (2022) 139669, doi: 10.1016/j.cej.2022.139669.
- X.Q. Dai, L. Chen, Z.Y. Li, X.J. Li, J.F. Wang, X. Hu,
L.H. Zhao, Y.M. Jia, S.X. Sun, Y. Wu, Y.M. He,
CuS/KTa0.75Nb0.25O3
nanocomposite utilizing solar and mechanical energy for
catalytic N2 fixation, J. Colloid Interface Sci., 603 (2021) 220–232.
- L. Chen, X.Q. Dai, X.J. Li, J.F. Wang, H.F. Chen, X. Hu,
H.J. Lin, Y.M. He, Y. Wu, M.H. Fan, A novel
Bi2S3/KTa0.75Nb0.25O3
nanocomposite with high efficiency for photocatalytic
and piezocatalytic N2 fixation, J. Mater. Chem. A, 9 (2021)
13344–13354.
- S. Zheng, X.J. Li, J.Y. Zhang, J.F. Wang, C.R. Zhao, X. Hu, Y. Wu,
Y.M. He, One-step preparation of MoOx/ZnS/ZnO composite
and its excellent performance in piezocatalytic degradation
of Rhodamine B under ultrasonic vibration, J. Environ. Sci.,
125 (2023) 1–13.
- Q.L. Zhang, P.F. Chen, L. Chen, M.F. Wu, X.Q. Dai, P.X. Xing,
H.J. Lin, L.H. Zhao, Y.M. He, Facile fabrication of novel
Ag2S/K-g-C3N4 composite and its enhanced performance in
photocatalytic H2 evolution, J. Colloid Interface Sci., 568 (2020)
117–129.
- T.S. Natarajan, R.J. Tayade, Direct dual CaIn2S4/Bi2WO5
semiconductor nanocomposites with efficient inter-crosssectional
charge carrier transfer for enhanced visible light
photocatalysis, J. Nanopart. Res., 23 (2021) 127, doi: 10.1007/s11051-021-05252-y.
- J.J. Ding, S. Sun, W.H. Yan, J. Bao, C. Gao, Photocatalytic H2
evolution on a novel CaIn2S4 photocatalyst under visible light
irradiation, Int. J. Hydrogen Energy, 38 (2013) 13153–13158.
- S.Y. Xu, J. Dai, J. Yang, J. You, J.Y. Hao, Facile synthesis of
novel CaIn2S4/ZnIn2S4 composites with efficient performance
for photocatalytic reduction of Cr(VI) under simulated
sunlight irradiation, Nanomaterials, 8 (2018) 472, doi: 10.3390/nano8070472.
- J.J. Ding, W.H. Yan, S. Sun, J. Bao, C. Gao, Hydrothermal
synthesis of CaIn2S4-reduced graphene oxide nanocomposites
with increased photocatalytic performance, ACS Appl. Mater.
Interfaces, 6 (2014) 12877–12884.
- G.X. Cao, Y.B. Zhao, Z.S. Wu, Synthesis and characterization
of In2S3 nanoparticles, J. Alloys Compd., 472 (2009) 325–327.
- X.L. Fu, X.X. Wang, Z.X. Chen, Z.Z. Zhang, Z.H. Li,
Photocatalytic performance of tetragonal and cubic β-In2S3,
for the water splitting under visible light irradiation,
Appl. Catal., B, 95 (2010) 393–399.
- X.W. Wang, W.X. Liu, X.Q. Wang, D.H. Yu, H. Liu, Preparation
of In2S3@TiO2 nanobelt heterostructures with high UV-Visible
light photocatalytic activities, Sci. Adv. Mater., 7 (2015)
479–488.
- Y. Fang, S.R. Zhu, M.K. Wu, W.N. Zhao, L. Han, MOF-derived
In2S3 nanorods for photocatalytic removal of dye and
antibiotics, J. Solid State Chem., 266 (2018) 205–209.
- P. Zhang, L.N. Zhang, E.L. Dong, X. Zhang, W. Zhang, Synthesis
of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light
photocatalytic activity, J. Alloys Compd., 885 (2021) 161027,
doi: 10.1016/j.jallcom.2021.161027.
- S. Yang, C.Y. Xu, B.Y. Zhang, L. Yang, S.P. Hu, L. Zhen, Ca(II)
doped β-In2S3 hierarchical structures for photocatalytic
hydrogen generation and organic dye degradation under
visible light irradiation, J. Colloid Interface Sci., 491 (2017)
230–237.
- G.D. Liu, X.L. Jiao, Z.H. Qin, D.R. Chen, Solvothermal
preparation and visible photocatalytic activity of polycrystalline
β-In2S3 nanotubes, Cryst. Eng. Comm., 13 (2011) 182–187.
- Z. Zhou, Y.H. Li, K.L. Lv, X.F. Wu, Q. Li, J.M. Luo, Fabrication
of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible
photocatalytic reduction of Cr(VI), Mater. Sci. Semicond.
Process., 75 (2018) 334–341.
- J. Singha, R.K. Soni, J. Kim, Photocatalytic β-In2S3 nanoflowers
synthesized by thermal assembly of In2S3 nanosheets, J.
Alloys Compd., 911 (2022) 165099, doi: 10.1016/j.jallcom.2022.165099.
- I.J. Badovinac, R. Peter, A. Omerzu, K. Salamon, I. Šarić,
A. Samaržija, M. Perčić, I.K. Piltaver, G. Ambrožić, M. Petravić,
Grain size effect on photocatalytic activity of TiO2 thin
films grown by atomic layer deposition, Thin Solid Films,
709 (2020) 138215, doi: 10.1016/j.tsf.2020.138215.
- J. Li, S.C. Meng, T.Y. Wang, Q. Xu, L.Q. Shao, D.L. Jiang,
M. Chen, Novel Au/CaIn2S4 nanocomposites with plasmonenhanced
photocatalytic performance under visible light
irradiation, Appl. Surf. Sci., 396 (2016) 430–437.
- Y.H. He, D.Z. Li, G.G. Xiao, W. Chen, Y.B. Chen, A new
application of nanocrystal In2S3 in efficient degradation of
organic pollutants under visible light irradiation, J. Phys. Chem.
C, 113 (2009) 5254–5262.
- P. Srivastava, N.L. Saini, B.R. Sekhar, K.B. Garg, Core-level
photoemission study on a Bi-2212 single crystal, Mater. Sci.
Eng., B, 22 (1994) 217–221.
- R.W. Hewitt, N. Winograd, Oxidation of polycrystalline
indium studied by X‐ray photoelectron spectroscopy and static
secondary ion mass spectroscopy, J. Appl. Phys., 51 (1980)
2620–2624.
- K. Okada, A. Kotani, B.T. Thole, Charge transfer satellites
and multiplet splitting in X-ray photoemission spectra of late
transition metal halides, J. Electron. Spectrosc. Relat. Phenom.,
58 (1992) 325–343.
- M. Tekalgne, A. Hasani, Q.V. Le, T.P. Nguyen, K.S. Choi, CdSe
quantum dots doped WS2 nanoflowers for enhanced solar
hydrogen production, Phys. Status Solidi A, 216 (2019) 1800853,
doi: 10.1002/pssa.201800853.
- S. Jasbinder, J. Heo, J. Mackenzie, R.M. Almeida, XPS study of
non-bridging Se atoms in As2Se3-Tl2Se glasses, J. Non-Cryst.
Solids, 101 (1988) 18–22.
- B. Silvia, Glossary of terms used in photochemistry, 3rd
ed. (IUPAC Recommendations 2006), Pure Appl. Chem.,
79 (2007) 239–465.
- F.K. Bi, Z.Y. Zhao, Y. Yang, W.K. Gao, N. Liu, Y.D. Huang,
X.D. Zhang, Chlorine-coordinated Pd single atom enhanced
the chlorine resistance for volatile organic compound degradation:
mechanism study, Environ. Sci. Technol., 56 (2022)
17321–17330.
- S.M. Sun, W.Z. Wang, L. Zhang, Facile preparation of threedimensionally
ordered macroporous Bi2WO6 with high
photocatalytic activity, J. Mater. Chem., 22 (2012) 19244–19249.
- X.D. Zhang, Z.Y. Zhao, S.H. Zhao, S. Xiang, W.K. Gao, L. Wang,
J.C. Xu, Y.X. Wang, The promoting effect of alkali metal
and H2O on Mn-MOF derivatives for toluene oxidation: a
combined experimental and theoretical investigation, J. Catal.,
415 (2022) 218–235.
- J.J. Ning, K.K. Men, G.J. Xiao, L.Y. Zhao, L. Wang, B.B. Liu,
B. Zou, Synthesis, optical properties and growth process of
In2S3 nanoparticles, J. Colloid Interface Sci., 347 (2010) 172–176.
- P. Singh, B. Mohan, V. Madaan, R. Ranga, P. Kumari, S. Kumar,
V. Bhankar, P. Kumar, K. Kumar, Nanomaterials photocatalytic
activities for wastewater treatment: a review, Environ. Sci.
Pollut. Res., 29 (2022) 69294–69326.
- R.J. Guo, R. Tian, D.L. Shi, H. Li, H.H. Liu, S-doped ZnSnO3
nanoparticles with narrow band gaps for photocatalytic
wastewater treatment, ACS Appl. Nano Mater., 12 (2019)
7755–7765.
- J. Kang, C.Y. Jin, Z.L. Li, M. Wang, Z.Q. Chen, Y.Z. Wang, Dual
Z-scheme MoS2/g-C3N4/Bi24O31Cl10 ternary heterojunction
photocatalysts for enhanced visible-light photodegradation of
antibiotic, J. Alloys Compd., 825 (2020) 153975, doi: 10.1016/j.jallcom.2020.153975.