References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666–669.
  2. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183–191.
  3. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6 (2007) 652–655.
  4. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  5. W. Li, C. Zhuang, Y. Li, C. Gao, W. Jiang, Z. Sun, K. Qi, Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting, Ceram. Int., 47 (2021) 21769–21776.
  6. K. Qi, C. Zhuang, M. Zhang, P. Gholami, A. Khataee, Sonochemical synthesis of photocatalysts and their applications, J. Mater. Sci. Technol., 123 (2022) 243–256.
  7. K. Qi, R. Selvaraj, T. Al Fahdi, S. Al-Kindy, Y. Kim, G.-C. Wang, C.-W. Tai, M. Sillanpää, Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: a theoretical and experimental study, Appl. Surf. Sci., 387 (2016) 750–758.
  8. K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
  9. J. Song, J. Zhang, A. Zada, Y. Ma, K. Qi, CoFe2O4/NiFe2O4 S-scheme composite for photocatalytic decomposition of antibiotic contaminants, Ceram. Int., 49 (2023) 12327–12333.
  10. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc., 131 (2009) 12540–12541
  11. H. Huang, B. Dai, W. Wang, C. Lu, J. Kou, Y. Ni, L. Wang, Z. Xu, Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods, Nano Lett., 17 (2017) 3803–3808.
  12. A. Tadjarodi, O. Akhavan, K. Bijanzad, M.M. Khiavi, Mechanochemically prepared BiOCl nanoplates for removal of rhodamine B and pentachlorophenol, Monatsh. Chem. – Chem. Monthly, 147 (2015) 685–696.
  13. K. Qi, S.-y. Liu, R. Selvaraj, W. Wang, Z. Yan, Comparison of Pt and Ag as co-catalyst on g-C3N4 for improving photocatalytic activity: experimental and DFT studies, Desal. Water Treat., 153 (2019) 244–252.
  14. K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-y. Liu, H. Lin, G. Wang, Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies, Ceram. Int., 46 (2020) 1494–1502.
  15. Q. Cui, X. Gu, Y. Zhao, K. Qi, Y. Yan, S-scheme CuInS2/ZnS heterojunctions for the visible light-driven photocatalytic degradation of tetracycline antibiotic drugs, J. Taiwan Inst. Chem. Eng., 142 (2023) 104679, doi: 10.1016/j.jtice.2023.104679.
  16. K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation, Appl. Surf. Sci., 466 (2019) 847–853.
  17. K. Qi, S.-y. Liu, Y. Chen, B. Xia, G.-D. Li, A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 183 (2018) 193–199.
  18. J. Zhang, Y. Zhao, K. Zhang, A. Zada, K. Qi, Sonocatalytic degradation of tetracycline hydrochloride with
    CoFe2O4/g-C3N4 composite, Ultrason. Sonochem., 94 (2023) 106325, doi: 10.1016/j.ultsonch.2023.106325.
  19. K. Qi, W. Lv, I. Khan, S.-y. Liu, Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating, Chin. J. Catal., 41 (2020) 114–121.
  20. K. Qi, S.-y. Liu, R. Wang, Z. Chen, R. Selvaraj, Pt/g-C3N4 composites for photocatalytic H2 production and OH formation, Desal. Water Treat., 154 (2019) 312–319.
  21. T. Liu, Y. Yang, S. Cao, R. Xiang, L. Zhang, J. Yu, Pore perforation of graphene coupled with in-situ growth of Co3Se4 for highperformance Na-ion battery, Adv. Mater., 35 (2023) 2207752, doi: 10.1002/adma.202207752.
  22. C. Yang, Y. Wang, J. Yu, S. Cao, Ultrathin 2D/2D graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction, ACS Appl. Energy Mater., 4 (2021) 8734–8738.
  23. Y. Xue, B. Wu, Q. Bao, Y. Liu, Controllable synthesis of doped graphene and its applications, Small, 10 (2014) 2975–2991.
  24. J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Graphene nanomesh, Nat. Nanotechnol., 5 (2010) 190–194.
  25. O. Akhavan, E. Ghaderi, Graphene nanomesh promises extremely efficient in vivo photothermal therapy, Small, 9 (2013) 3593–3601.
  26. O. Akhavan, E. Ghaderi, S.A. Shirazian, Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors, Colloids Surf., B, 126 (2015) 313–321.
  27. P. Lazar, F. Karlický, P. Jurečka, M. Kocman, E. Otyepková, K. Šafářová, M. Otyepka, Adsorption of small organic molecules on graphene, J. Am. Chem. Soc., 135 (2013) 6372–6377.
  28. F. Cheng, H. Yin, Q. Xiang, Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity, Appl. Surf. Sci., 391 (2017) 432–439.
  29. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper, ACS Nano, 4 (2010) 4317–4323.
  30. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731–5736.
  31. M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A, 3 (2015) 11700–11715.
  32. O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets, Carbon, 48 (2010) 509–519.
  33. P. Songkeaw, K. Onlaor, T. Thiwawong, B. Tunhoo, Transparent and flexible humidity sensor based on graphene oxide thin films prepared by electrostatic spray deposition technique, J. Mater. Sci.: Mater. Electron., 31 (2020) 12206–12215.
  34. H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater., 23 (2011) 1089–1115.
  35. E. Rokhsat, O. Akhavan, Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation, Appl. Surf. Sci., 371 (2016) 590–595.
  36. J. Zhang, A. Bifulco, P. Amato, C. Imparato, K. Qi, Copper indium sulfide quantum dots in photocatalysis, J. Colloid Interface Sci., 638 (2023) 193–219.
  37. J. Miao, D. Cai, J. Si, Q. Wang, H. Zhan, Multi-component hierarchical hollow Co–Mo–O nanocages anchored on reduced graphene oxide with strong interfacial interaction for lithium-ion batteries, J. Alloys Compd., 828 (2020) 154379, doi: 10.1016/j.jallcom.2020.154379.
  38. K. Qi, S.-y. Liu, A. Zada, Graphitic carbon nitride, a polymer photocatalyst, J. Taiwan Inst. Chem. Eng., 109 (2020) 111–123.
  39. Y. Chen, P. Wang, Y. Liang, M. Zhao, Y. Jiang, G. Wang, P. Zou, J. Zeng, Y. Zhang, Y. Wang, Fabrication
    of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities, J. Colloid Interface Sci., 536 (2019) 389–398.
  40. J. Hu, Y.-l. Dong, X.-j. Chen, H.-j. Zhang, J.-m. Zheng, Q. Wang, X.-g. Chen, A highly efficient catalyst: in-situ growth of Au nanoparticles on graphene oxide–Fe3O4 nanocomposite support, Chem. Eng. J., 236 (2014) 1–8.
  41. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol, Carbon, 49 (2011) 11–18.
  42. O. Akhavan, E. Ghaderi, Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons, Nanoscale, 5 (2013) 10316–10326.
  43. W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide-based hybrid nanostructures for advanced supercapacitors, J. Alloys Compd., 775 (2019) 1324–1356.
  44. J. Zhang, Z. Xiong, X.S. Zhao, Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation, J. Mater. Chem., 21 (2011) 3634–3640.
  45. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania-graphene nanocomposites, J. Phys. Chem. C, 113 (2009) 19812–19823.
  46. N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.-M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly, Adv. Funct. Mater., 21 (2011) 1717–1722.
  47. O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C, 113 (2009) 20214–20220.
  48. S.-M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett., 9 (2009) 72–75.
  49. A. Mukherji, B. Seger, G.Q.M. Lu, L. Wang, Nitrogen-doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production, ACS Nano, 5 (2011) 3483–3492.
  50. M. Zhu, P. Chen, M. Liu, Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst, ACS Nano, 5 (2011) 4529–4536.
  51. Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst, Chem. Commun., 46 (2010) 4740–4742.
  52. B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater., 24 (2014) 4542–4548.
  53. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials, Adv. Mater., 22 (2010) 103–106.
  54. J.S. Chen, Z. Wang, X.C. Dong, P. Chen, X.W. Lou, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale, 3 (2011) 2158–2161.
  55. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets, J. Mater. Chem., 21 (2011) 3415–3421.
  56. Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/graphene nanocomposite photocatalysts, Adv. Energy Mater., 5 (2015) 1500010, doi: 10.1002/aenm.201500010.
  57. Y. Yang, H. Tan, B. Cheng, J. Fan, J. Yu, W. Ho, Near‐infraredresponsive photocatalysts, Small Methods, 5 (2021) 2001042, doi: 10.1002/smtd.202001042.
  58. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41 (2012) 782–796.
  59. L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme photocatalyst, Adv. Mater., 34 (2022) 2107668, doi: 10.1002/adma.202107668.
  60. Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?, ACS Nano, 4 (2010) 7303–7314.
  61. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro mesoporous TiO2 graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities, ACS Nano, 5 (2011) 590–596.
  62. M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338–344.
  63. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  64. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation, ACS Nano, 8 (2014) 7078–7087.
  65. Z. Mou, Y. Dong, S. Li, Y. Du, X. Wang, P. Yang, S. Wang, Eosin Y functionalized graphene for photocatalytic hydrogen production from water, Int. J. Hydrogen Energy, 36 (2011) 8885–8893.
  66. X. Zhang, Y. Sun, X. Cui, Z. Jiang, A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution, Int. J. Hydrogen Energy, 37 (2012) 811–815.
  67. F. Wang, M. Zheng, C. Zhu, B. Zhang, W. Chen, L. Ma, W. Shen, Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of graphene, Nanotechnology, 26 (2015) 345402, doi: 10.1088/0957-4484/26/34/345402.
  68. L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu, H.-Q. Yu, Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation, J. Phys. Chem. C, 115 (2011) 11466–11473.
  69. Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 134 (2012) 6575–6578.
  70. H. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature, 275 (1978) 115–116.
  71. J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Appl. Surf. Sci., 392 (2017) 658–686.
  72. W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou, An in-situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalyticdriven hydrogenation and coupling of CO2 into methane and ethane, Adv. Funct. Mater., 23 (2013) 1743–1749.
  73. V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photo-induced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2 (2009) 745–758.
  74. L. Wang, J. Zhang, H. Yu, I.H. Patir, Y. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions, J. Phys. Chem. Lett., 13 (2022) 4695–4700.
  75. X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2, Appl. Catal., B, 228 (2018) 47–53.
  76. J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, X. Wang, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci. Rep., 4 (2014) 4359, doi: 10.1038/srep04359.
  77. T. Dutta, R. Sarkar, B. Pakhira, S. Ghosh, R. Sarkar, A. Barui, S. Sarkar, ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO), RSC Adv., 5 (2015) 80192–80195.
  78. V.L. Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark, Langmuir, 31 (2015) 9155–9162.
  79. A. Ahmad, A. Sattar Qureshi, L. Li, J. Bao, X. Jia, Y. Xu, X. Guo, Antibacterial activity of graphene supported FeAg bimetallic nanocomposites, Colloids Surf., B, 143 (2016) 490–498.
  80. O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner, Carbon, 50 (2012) 1853–1860.
  81. O. Akhavan, E. Ghaderi, A. Akhavan, Size-dependent genotoxicity of graphene nanoplatelets in human stem cells, Biomaterials, 33 (2012) 8017–8025.
  82. M. Jannesari, O. Akhavan, H.R. Madaah Hosseini, B. Bakhshi, Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration, ACS Appl. Mater. Interfaces, 12 (2020) 35813–35825.
  83. X. Zou, L. Zhang, Z. Wang, Y. Luo, Mechanisms of the antimicrobial activities of graphene materials, J. Am. Chem. Soc., 138 (2016) 2064–2077.
  84. J. Wang, Y. Wei, X. Shi, H. Gao, Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption, RSC Adv., 3 (2013) 15776–15782.
  85. R. Guo, J. Mao, L.-T. Yan, Computer simulation of cell entry of graphene nanosheet, Biomaterials, 34 (2013) 4296–4301.
  86. V.T.H. Pham, V.K. Truong, M.D.J. Quinn, S.M. Notley, Y. Guo, V.A. Baulin, M.A. Kobaisi, R.J. Crawford, E.P. Ivanova, Graphene induces formation of pores that kill spherical and rod-shaped bacteria, ACS Nano, 9 (2015) 8458–8467.
  87. J.D. Mangadlao, C.M. Santos, M.J.L. Felipe, A.C.C. de Leon, D.F. Rodrigues, R.C. Advincula, On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films, Chem. Commun., 51 (2015) 2886–2889.
  88. F. Perreault, A.F. de Faria, S. Nejati, M. Elimelech, Antimicrobial properties of graphene oxide nanosheets: why size matters, ACS Nano, 9 (2015) 7226–7236.
  89. X. Liu, S. Sen, J. Liu, I. Kulaots, D. Geohegan, A. Kane, A.A. Puretzky, C.M. Rouleau, K.L. More, G.T.R. Palmore, R.H. Hurt, Antioxidant deactivation on graphenic nanocarbon surfaces, Small, 7 (2011) 2775–2785.
  90. F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev., 44 (2015) 5861–5896.
  91. L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives, Small, 12 (2016) 4165–4184.
  92. S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications, Carbon, 91 (2015) 122–143.
  93. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5 (2011) 6971–6980.
  94. J. Chen, X. Wang, H. Han, A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae, J. Nanopart. Res., 15 (2013) 1658, doi: 10.1007/s11051-013-1658-6.
  95. S. Liu, M. Hu, T.H. Zeng, R. Wu, R. Jiang, J. Wei, L. Wang, J. Kong, Y. Chen, Lateral dimension-dependent antibacterial activity of graphene oxide sheets, Langmuir, 28 (2012) 12364–12372.
  96. O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation, J. Phys. Chem. B, 115 (2011) 6279–6288.
  97. I.E. Mejías Carpio, C.M. Santos, X. Wei, D.F. Rodrigues, Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells, Nanoscale, 4 (2012) 4746–4756.
  98. J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan, H. Han, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation, Nanoscale, 6 (2014) 1879–1889.
  99. M. Dallavalle, M. Calvaresi, A. Bottoni, M. Melle-Franco, F. Zerbetto, Graphene can wreak havoc with cell membranes, ACS Appl. Mater. Interfaces, 7 (2015) 4406–4414.
  100. L. Liu, J. Liu, Y. Wang, X. Yan, D.D. Sun, Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity, New J. Chem., 35 (2011) 1418–1423.
  101. S. Cao, C. Chen, J. Zhang, C. Zhang, W. Yu, B. Liang, Y. Tsang, MnOx quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic microwave method, Appl. Catal., B, 176–177 (2015) 500–512.
  102. Y.-N. Chang, X.-M. Ou, G.-M. Zeng, J.-L. Gong, C.-H. Deng, Y. Jiang, J. Liang, G.-Q. Yuan, H.-Y. Liu, X. He, Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation, Appl. Surf. Sci., 343 (2015) 1–10.
  103. C.-H. Deng, J.-L. Gong, G.-M. Zeng, C.-G. Niu, Q.-Y. Niu, W. Zhang, H.-Y. Liu, Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites, J. Hazard. Mater., 276 (2014) 66–76.
  104. T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon, 50 (2012) 2994–3000.
  105. S. Chella, P. Kollu, E.V.P.R. Komarala, S. Doshi, M. Saranya, S. Felix, R. Ramachandran, P. Saravanan, V.L. Koneru, V. Venugopal, S.K. Jeong, A. Nirmala Grace, Solvothermal synthesis of MnFe2O4-graphene composite—investigation of its adsorption and antimicrobial properties, Appl. Surf. Sci., 327 (2015) 27–36.
  106. S.S. An, K.-S. Yun, L. Zhong, Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties, Int. J. Nanomed., 10 (2015) 79–92.
  107. R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity, Mater. Chem. Phys., 121 (2010) 198–201.
  108. T. Seifi, A. Reza Kamali, Antiviral performance of graphenebased materials with emphasis on COVID-19:
    a review, Med. Drug Discovery, 11 (2021) 100099, doi: 10.1016/j.medidd.2021.100099.
  109. O. Akhavan, M. Choobtashani, E. Ghaderi, Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation, J. Phys. Chem. C, 116 (2012) 9653–9659.
  110. J. Prakash, S.B.N. Krishna, P. Kumar, V. Kumar, K.S. Ghosh, H.C. Swart, S. Bellucci, J. Cho, Recent advances on metal oxide based nano-photocatalysts as potential antibacterial and antiviral agents, Catalysts, 12 (2022) 1047, doi: 10.3390/catal12091047.
  111. O. Akhavan, E. Ghaderi, K. Rahimi, Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation, J. Mater. Chem., 22 (2012) 23260–23266.
  112. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts, ACS Nano, 4 (2010) 4174–4180.
  113. O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar, Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction, J. Phys. Chem. C, 114 (2010) 12955–12959.