References
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang,
S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in
atomically thin carbon films, Science, 306 (2004) 666–669.
- A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater.,
6 (2007) 183–191.
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake,
M.I. Katsnelson, K.S. Novoselov, Detection of individual gas
molecules adsorbed on graphene, Nat. Mater., 6 (2007) 652–655.
- A. Fujishima, K. Honda, Electrochemical photolysis of water at
a semiconductor electrode, Nature, 238 (1972) 37–38.
- W. Li, C. Zhuang, Y. Li, C. Gao, W. Jiang, Z. Sun, K. Qi, Anchoring
ultra-small TiO2 quantum dots onto ultra-thin and large-sized
Mxene nanosheets for highly efficient photocatalytic water
splitting, Ceram. Int., 47 (2021) 21769–21776.
- K. Qi, C. Zhuang, M. Zhang, P. Gholami, A. Khataee, Sonochemical
synthesis of photocatalysts and their applications,
J. Mater. Sci. Technol., 123 (2022) 243–256.
- K. Qi, R. Selvaraj, T. Al Fahdi, S. Al-Kindy, Y. Kim, G.-C. Wang,
C.-W. Tai, M. Sillanpää, Enhanced photocatalytic activity
of anatase-TiO2 nanoparticles by fullerene modification: a
theoretical and experimental study, Appl. Surf. Sci., 387 (2016)
750–758.
- K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme
photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
- J. Song, J. Zhang, A. Zada, Y. Ma, K. Qi, CoFe2O4/NiFe2O4
S-scheme composite for photocatalytic decomposition of
antibiotic contaminants, Ceram. Int., 49 (2023) 12327–12333.
- A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size
effects of ZnO nanocrystals on photocatalytic activity, J. Am.
Chem. Soc., 131 (2009) 12540–12541
- H. Huang, B. Dai, W. Wang, C. Lu, J. Kou, Y. Ni, L. Wang, Z. Xu,
Oriented built-in electric field introduced by surface gradient
diffusion doping for enhanced photocatalytic H2 evolution in
CdS nanorods, Nano Lett., 17 (2017) 3803–3808.
- A. Tadjarodi, O. Akhavan, K. Bijanzad, M.M. Khiavi,
Mechanochemically prepared BiOCl nanoplates for removal of
rhodamine B and pentachlorophenol, Monatsh. Chem. – Chem.
Monthly, 147 (2015) 685–696.
- K. Qi, S.-y. Liu, R. Selvaraj, W. Wang, Z. Yan, Comparison of Pt
and Ag as co-catalyst on g-C3N4 for improving photocatalytic
activity: experimental and DFT studies, Desal. Water Treat.,
153 (2019) 244–252.
- K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-y. Liu, H. Lin,
G. Wang, Transition metal doped ZnO nanoparticles with
enhanced photocatalytic and antibacterial performances:
experimental and DFT studies, Ceram. Int., 46 (2020) 1494–1502.
- Q. Cui, X. Gu, Y. Zhao, K. Qi, Y. Yan, S-scheme CuInS2/ZnS
heterojunctions for the visible light-driven photocatalytic
degradation of tetracycline antibiotic drugs, J. Taiwan Inst.
Chem. Eng., 142 (2023) 104679, doi: 10.1016/j.jtice.2023.104679.
- K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Electroless plating
Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic
water splitting for H2 generation, Appl. Surf. Sci., 466 (2019)
847–853.
- K. Qi, S.-y. Liu, Y. Chen, B. Xia, G.-D. Li, A simple post-treatment
with urea solution to enhance the photoelectric conversion
efficiency for TiO2 dye-sensitized solar cells, Sol. Energy Mater.
Sol. Cells, 183 (2018) 193–199.
- J. Zhang, Y. Zhao, K. Zhang, A. Zada, K. Qi, Sonocatalytic
degradation of tetracycline hydrochloride with
CoFe2O4/g-C3N4 composite, Ultrason. Sonochem., 94 (2023) 106325,
doi: 10.1016/j.ultsonch.2023.106325.
- K. Qi, W. Lv, I. Khan, S.-y. Liu, Photocatalytic H2 generation via
CoP quantum-dot-modified g-C3N4 synthesized by electroless
plating, Chin. J. Catal., 41 (2020) 114–121.
- K. Qi, S.-y. Liu, R. Wang, Z. Chen, R. Selvaraj, Pt/g-C3N4
composites for photocatalytic H2 production and •OH
formation, Desal. Water Treat., 154 (2019) 312–319.
- T. Liu, Y. Yang, S. Cao, R. Xiang, L. Zhang, J. Yu, Pore perforation
of graphene coupled with in-situ growth of Co3Se4 for highperformance
Na-ion battery, Adv. Mater., 35 (2023) 2207752,
doi: 10.1002/adma.202207752.
- C. Yang, Y. Wang, J. Yu, S. Cao, Ultrathin 2D/2D graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction,
ACS Appl. Energy Mater., 4 (2021) 8734–8738.
- Y. Xue, B. Wu, Q. Bao, Y. Liu, Controllable synthesis of doped
graphene and its applications, Small, 10 (2014) 2975–2991.
- J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Graphene
nanomesh, Nat. Nanotechnol., 5 (2010) 190–194.
- O. Akhavan, E. Ghaderi, Graphene nanomesh promises
extremely efficient in vivo photothermal therapy, Small,
9 (2013) 3593–3601.
- O. Akhavan, E. Ghaderi, S.A. Shirazian, Near infrared
laser stimulation of human neural stem cells into neurons
on graphene nanomesh semiconductors, Colloids Surf., B,
126 (2015) 313–321.
- P. Lazar, F. Karlický, P. Jurečka, M. Kocman, E. Otyepková,
K. Šafářová, M. Otyepka, Adsorption of small organic molecules
on graphene, J. Am. Chem. Soc., 135 (2013) 6372–6377.
- F. Cheng, H. Yin, Q. Xiang, Low-temperature solid-state
preparation of ternary CdS/g-C3N4/CuS nanocomposites for
enhanced visible-light photocatalytic H2-production activity,
Appl. Surf. Sci., 391 (2017) 432–439.
- W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang,
C. Fan, Graphene-based antibacterial paper, ACS Nano,
4 (2010) 4317–4323.
- O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene
oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731–5736.
- M. Yi, Z. Shen, A review on mechanical exfoliation for the
scalable production of graphene, J. Mater. Chem. A, 3 (2015)
11700–11715.
- O. Akhavan, The effect of heat treatment on formation of
graphene thin films from graphene oxide nanosheets, Carbon,
48 (2010) 509–519.
- P. Songkeaw, K. Onlaor, T. Thiwawong, B. Tunhoo, Transparent
and flexible humidity sensor based on graphene oxide thin
films prepared by electrostatic spray deposition technique,
J. Mater. Sci.: Mater. Electron., 31 (2020) 12206–12215.
- H. Bai, C. Li, G. Shi, Functional composite materials based
on chemically converted graphene, Adv. Mater., 23 (2011)
1089–1115.
- E. Rokhsat, O. Akhavan, Improving the photocatalytic activity
of graphene oxide/ZnO nanorod films by UV irradiation,
Appl. Surf. Sci., 371 (2016) 590–595.
- J. Zhang, A. Bifulco, P. Amato, C. Imparato, K. Qi, Copper
indium sulfide quantum dots in photocatalysis, J. Colloid
Interface Sci., 638 (2023) 193–219.
- J. Miao, D. Cai, J. Si, Q. Wang, H. Zhan, Multi-component
hierarchical hollow Co–Mo–O nanocages anchored on
reduced graphene oxide with strong interfacial interaction
for lithium-ion batteries, J. Alloys Compd., 828 (2020) 154379,
doi: 10.1016/j.jallcom.2020.154379.
- K. Qi, S.-y. Liu, A. Zada, Graphitic carbon nitride, a polymer
photocatalyst, J. Taiwan Inst. Chem. Eng., 109 (2020)
111–123.
- Y. Chen, P. Wang, Y. Liang, M. Zhao, Y. Jiang, G. Wang, P. Zou,
J. Zeng, Y. Zhang, Y. Wang, Fabrication
of a three-dimensional
porous Z-scheme silver/silver bromide/graphitic carbon
nitride@nitrogen-doped graphene aerogel with enhanced
visible-light photocatalytic and antibacterial activities,
J. Colloid Interface Sci., 536 (2019) 389–398.
- J. Hu, Y.-l. Dong, X.-j. Chen, H.-j. Zhang, J.-m. Zheng, Q. Wang,
X.-g. Chen, A highly efficient catalyst: in-situ growth of Au
nanoparticles on graphene oxide–Fe3O4 nanocomposite
support, Chem. Eng. J., 236 (2014) 1–8.
- O. Akhavan, Photocatalytic reduction of graphene oxides
hybridized by ZnO nanoparticles in ethanol, Carbon, 49 (2011)
11–18.
- O. Akhavan, E. Ghaderi, Flash photo stimulation of human
neural stem cells on graphene/TiO2 heterojunction for
differentiation into neurons, Nanoscale, 5 (2013) 10316–10326.
- W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, Recent
development of mixed transition metal oxide and graphene/mixed transition metal oxide-based hybrid nanostructures
for advanced supercapacitors, J. Alloys Compd., 775 (2019)
1324–1356.
- J. Zhang, Z. Xiong, X.S. Zhao, Graphene–metal–oxide
composites for the degradation of dyes under visible light
irradiation, J. Mater. Chem., 21 (2011) 3634–3640.
- T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu,
N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler,
D.L. Huber, Synthesis and characterization of titania-graphene
nanocomposites, J. Phys. Chem. C, 113 (2009) 19812–19823.
- N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.-M. Cheng, Battery
performance and photocatalytic activity of mesoporous anatase
TiO2 nanospheres/graphene composites by template-free
self-assembly, Adv. Funct. Mater., 21 (2011) 1717–1722.
- O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene
oxide nanosheets on TiO2 thin film for photoinactivation
of bacteria in solar light irradiation, J. Phys. Chem. C,
113 (2009) 20214–20220.
- S.-M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance
and lithium storage capacity of SnO2/graphene nanoporous
electrodes with three-dimensionally delaminated flexible
structure, Nano Lett., 9 (2009) 72–75.
- A. Mukherji, B. Seger, G.Q.M. Lu, L. Wang, Nitrogen-doped
Sr2Ta2O7 coupled with graphene sheets as photocatalysts for
increased photocatalytic hydrogen production, ACS Nano,
5 (2011) 3483–3492.
- M. Zhu, P. Chen, M. Liu, Graphene oxide enwrapped Ag/AgX
(X = Br, Cl) nanocomposite as a highly efficient visible-light
plasmonic photocatalyst, ACS Nano, 5 (2011) 4529–4536.
- Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chemically converted
graphene as substrate for immobilizing and enhancing the activity
of a polymeric catalyst, Chem. Commun., 46 (2010) 4740–4742.
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene
film: an excellent thermal conducting material with efficient
EMI shielding, Adv. Funct. Mater., 24 (2014) 4542–4548.
- A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang,
S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce
graphene-CdS quantum dot nanocomposites as promising
optoelectronic materials, Adv. Mater., 22 (2010) 103–106.
- J.S. Chen, Z. Wang, X.C. Dong, P. Chen, X.W. Lou, Graphene-wrapped
TiO2 hollow structures with enhanced lithium
storage capabilities, Nanoscale, 3 (2011) 2158–2161.
- J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, One step
hydrothermal synthesis of TiO2-reduced graphene oxide
sheets, J. Mater. Chem., 21 (2011) 3415–3421.
- Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/graphene
nanocomposite photocatalysts, Adv. Energy Mater., 5 (2015)
1500010, doi: 10.1002/aenm.201500010.
- Y. Yang, H. Tan, B. Cheng, J. Fan, J. Yu, W. Ho, Near‐infraredresponsive
photocatalysts, Small Methods, 5 (2021) 2001042,
doi: 10.1002/smtd.202001042.
- Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor
photocatalysts, Chem. Soc. Rev., 41 (2012) 782–796.
- L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme
photocatalyst, Adv. Mater., 34 (2022) 2107668, doi: 10.1002/adma.202107668.
- Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2-graphene
nanocomposites for gas-phase photocatalytic degradation of
volatile aromatic pollutant: is TiO2-graphene truly different
from other TiO2-carbon composite materials?, ACS Nano,
4 (2010) 7303–7314.
- J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang,
L. Jiang, Hierarchically ordered macro mesoporous TiO2
graphene composite films: improved mass transfer, reduced
charge recombination, and their enhanced photocatalytic
activities, ACS Nano, 5 (2011) 590–596.
- M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001)
338–344.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as
a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
- K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution
under visible light irradiation, ACS Nano, 8 (2014) 7078–7087.
- Z. Mou, Y. Dong, S. Li, Y. Du, X. Wang, P. Yang, S. Wang, Eosin
Y functionalized graphene for photocatalytic hydrogen production
from water, Int. J. Hydrogen Energy, 36 (2011) 8885–8893.
- X. Zhang, Y. Sun, X. Cui, Z. Jiang, A green and facile synthesis of
TiO2/graphene nanocomposites and their photocatalytic activity
for hydrogen evolution, Int. J. Hydrogen Energy, 37 (2012) 811–815.
- F. Wang, M. Zheng, C. Zhu, B. Zhang, W. Chen, L. Ma,
W. Shen, Visible light photocatalytic H2-production
activity of wide band gap ZnS nanoparticles based on the
photosensitization of graphene, Nanotechnology, 26 (2015)
345402, doi: 10.1088/0957-4484/26/34/345402.
- L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu, H.-Q. Yu, Highly
durable N-doped graphene/CdS nanocomposites with enhanced
photocatalytic hydrogen evolution from water under visible
light irradiation, J. Phys. Chem. C, 115 (2011) 11466–11473.
- Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and
graphene as cocatalysts for enhanced photocatalytic H2
production activity of TiO2 nanoparticles, J. Am. Chem. Soc.,
134 (2012) 6575–6578.
- H. Halmann, Photoelectrochemical reduction of aqueous
carbon dioxide on p-type gallium phosphide in liquid
junction solar cells, Nature, 275 (1978) 115–116.
- J. Low, B. Cheng, J. Yu, Surface modification and enhanced
photocatalytic CO2 reduction performance of TiO2: a review,
Appl. Surf. Sci., 392 (2017) 658–686.
- W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou,
An in-situ simultaneous reduction-hydrolysis technique for
fabrication of TiO2-graphene 2D sandwich-like hybrid
nanosheets: graphene-promoted selectivity of photocatalyticdriven
hydrogenation and coupling of CO2 into methane and
ethane, Adv. Funct. Mater., 23 (2013) 1743–1749.
- V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photo-induced
activation of CO2 on Ti-based heterogeneous catalysts: current
state, chemical physics-based insights and outlook, Energy
Environ. Sci., 2 (2009) 745–758.
- L. Wang, J. Zhang, H. Yu, I.H. Patir, Y. Li, S. Wageh,
A.A. Al-Ghamdi, J. Yu, Dynamics of photogenerated charge
carriers in inorganic/organic S-scheme heterojunctions,
J. Phys. Chem. Lett., 13 (2022) 4695–4700.
- X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Microwave
irradiation induced UIO-66-NH2 anchored on graphene
with high activity for photocatalytic reduction of CO2,
Appl. Catal., B, 228 (2018) 47–53.
- J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu,
X. Wang, Antibacterial activity of large-area monolayer
graphene film manipulated by charge transfer, Sci. Rep.,
4 (2014) 4359, doi: 10.1038/srep04359.
- T. Dutta, R. Sarkar, B. Pakhira, S. Ghosh, R. Sarkar, A. Barui,
S. Sarkar, ROS generation by reduced graphene oxide (rGO)
induced by visible light showing antibacterial activity:
comparison
with graphene oxide (GO), RSC Adv., 5 (2015)
80192–80195.
- V.L. Prasanna, R. Vijayaraghavan, Insight into the mechanism
of antibacterial activity of ZnO: surface defects
mediated reactive oxygen species even in the dark,
Langmuir, 31 (2015) 9155–9162.
- A. Ahmad, A. Sattar Qureshi, L. Li, J. Bao, X. Jia, Y. Xu, X. Guo,
Antibacterial activity of graphene supported FeAg bimetallic
nanocomposites, Colloids Surf., B, 143 (2016) 490–498.
- O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce
graphene oxide to bactericidal graphene in a self-limiting
manner, Carbon, 50 (2012) 1853–1860.
- O. Akhavan, E. Ghaderi, A. Akhavan, Size-dependent
genotoxicity of graphene nanoplatelets in human stem cells,
Biomaterials, 33 (2012) 8017–8025.
- M. Jannesari, O. Akhavan, H.R. Madaah Hosseini, B. Bakhshi,
Graphene/CuO2 nanoshuttles with controllable release of
oxygen nanobubbles promoting interruption of bacterial
respiration, ACS Appl. Mater. Interfaces, 12 (2020) 35813–35825.
- X. Zou, L. Zhang, Z. Wang, Y. Luo, Mechanisms of the
antimicrobial activities of graphene materials, J. Am. Chem.
Soc., 138 (2016) 2064–2077.
- J. Wang, Y. Wei, X. Shi, H. Gao, Cellular entry of graphene
nanosheets: the role of thickness, oxidation and surface
adsorption, RSC Adv., 3 (2013) 15776–15782.
- R. Guo, J. Mao, L.-T. Yan, Computer simulation of cell entry
of graphene nanosheet, Biomaterials, 34 (2013) 4296–4301.
- V.T.H. Pham, V.K. Truong, M.D.J. Quinn, S.M. Notley,
Y. Guo, V.A. Baulin, M.A. Kobaisi, R.J. Crawford, E.P. Ivanova,
Graphene induces formation of pores that kill spherical and
rod-shaped bacteria, ACS Nano, 9 (2015) 8458–8467.
- J.D. Mangadlao, C.M. Santos, M.J.L. Felipe, A.C.C. de
Leon, D.F. Rodrigues, R.C. Advincula, On the antibacterial
mechanism of graphene oxide (GO) Langmuir–Blodgett films,
Chem. Commun., 51 (2015) 2886–2889.
- F. Perreault, A.F. de Faria, S. Nejati, M. Elimelech,
Antimicrobial properties of graphene oxide nanosheets: why
size matters, ACS Nano, 9 (2015) 7226–7236.
- X. Liu, S. Sen, J. Liu, I. Kulaots, D. Geohegan, A. Kane,
A.A. Puretzky, C.M. Rouleau, K.L. More, G.T.R. Palmore,
R.H. Hurt, Antioxidant deactivation on graphenic
nanocarbon surfaces, Small, 7 (2011) 2775–2785.
- F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental
applications of graphene-based nanomaterials, Chem. Soc.
Rev., 44 (2015) 5861–5896.
- L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi,
Y. Wang, L. Ren, The antibacterial applications of graphene
and its derivatives, Small, 12 (2016) 4165–4184.
- S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials
for removal of chemical and biological contaminants from
water: a review of mechanisms and applications, Carbon,
91 (2015) 122–143.
- S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang,
J. Kong, Y. Chen, Antibacterial activity of graphite, graphite
oxide, graphene oxide, and reduced graphene oxide:
membrane and oxidative stress, ACS Nano, 5 (2011) 6971–6980.
- J. Chen, X. Wang, H. Han, A new function of graphene
oxide emerges: inactivating phytopathogenic bacterium
Xanthomonas oryzae pv. Oryzae, J. Nanopart. Res., 15 (2013)
1658, doi: 10.1007/s11051-013-1658-6.
- S. Liu, M. Hu, T.H. Zeng, R. Wu, R. Jiang, J. Wei, L. Wang, J. Kong,
Y. Chen, Lateral dimension-dependent antibacterial activity
of graphene oxide sheets, Langmuir, 28 (2012) 12364–12372.
- O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria
by graphene nanosheets for isolation from environment,
reactivation by sonication, and inactivation by near-infrared
irradiation, J. Phys. Chem. B, 115 (2011) 6279–6288.
- I.E. Mejías Carpio, C.M. Santos, X. Wei, D.F. Rodrigues,
Toxicity of a polymer–graphene oxide composite against
bacterial planktonic cells, biofilms, and mammalian cells,
Nanoscale, 4 (2012) 4746–4756.
- J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan, H. Han, Graphene
oxide exhibits broad-spectrum antimicrobial activity against
bacterial phytopathogens and fungal conidia by intertwining
and membrane perturbation, Nanoscale, 6 (2014) 1879–1889.
- M. Dallavalle, M. Calvaresi, A. Bottoni, M. Melle-Franco,
F. Zerbetto, Graphene can wreak havoc with cell membranes,
ACS Appl. Mater. Interfaces, 7 (2015) 4406–4414.
- L. Liu, J. Liu, Y. Wang, X. Yan, D.D. Sun, Facile synthesis
of monodispersed silver nanoparticles on graphene oxide
sheets with enhanced antibacterial activity, New J. Chem.,
35 (2011) 1418–1423.
- S. Cao, C. Chen, J. Zhang, C. Zhang, W. Yu, B. Liang, Y. Tsang,
MnOx quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic
microwave method, Appl. Catal., B, 176–177 (2015) 500–512.
- Y.-N. Chang, X.-M. Ou, G.-M. Zeng, J.-L. Gong, C.-H. Deng,
Y. Jiang, J. Liang, G.-Q. Yuan, H.-Y. Liu, X. He, Synthesis
of magnetic graphene oxide–TiO2 and their antibacterial
properties under solar irradiation, Appl. Surf. Sci., 343 (2015)
1–10.
- C.-H. Deng, J.-L. Gong, G.-M. Zeng, C.-G. Niu, Q.-Y. Niu,
W. Zhang, H.-Y. Liu, Inactivation performance and mechanism
of Escherichia coli in aqueous system exposed to iron
oxide loaded graphene nanocomposites, J. Hazard. Mater.,
276 (2014) 66–76.
- T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing,
photocatalytic and antibacterial properties of graphene–ZnO
nanoparticle hybrids, Carbon, 50 (2012) 2994–3000.
- S. Chella, P. Kollu, E.V.P.R. Komarala, S. Doshi, M. Saranya,
S. Felix, R. Ramachandran, P. Saravanan, V.L. Koneru,
V. Venugopal, S.K. Jeong, A. Nirmala Grace, Solvothermal
synthesis of MnFe2O4-graphene composite—investigation of
its adsorption and antimicrobial properties, Appl. Surf. Sci.,
327 (2015) 27–36.
- S.S. An, K.-S. Yun, L. Zhong, Graphene oxide-modified
ZnO particles: synthesis, characterization, and antibacterial
properties, Int. J. Nanomed., 10 (2015) 79–92.
- R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi,
A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis,
characterization, and antibacterial activity, Mater. Chem.
Phys., 121 (2010) 198–201.
- T. Seifi, A. Reza Kamali, Antiviral performance of graphenebased
materials with emphasis on COVID-19:
a review,
Med. Drug Discovery, 11 (2021) 100099, doi: 10.1016/j.medidd.2021.100099.
- O. Akhavan, M. Choobtashani, E. Ghaderi, Protein
degradation and RNA efflux of viruses photocatalyzed
by graphene-tungsten oxide composite under visible light
irradiation, J. Phys. Chem. C, 116 (2012) 9653–9659.
- J. Prakash, S.B.N. Krishna, P. Kumar, V. Kumar, K.S. Ghosh,
H.C. Swart, S. Bellucci, J. Cho, Recent advances on metal
oxide based nano-photocatalysts as potential antibacterial
and antiviral agents, Catalysts, 12 (2022) 1047, doi: 10.3390/catal12091047.
- O. Akhavan, E. Ghaderi, K. Rahimi, Adverse effects of
graphene incorporated in TiO2 photocatalyst on minuscule
animals under solar light irradiation, J. Mater. Chem.,
22 (2012) 23260–23266.
- O. Akhavan, Graphene nanomesh by ZnO nanorod
photocatalysts, ACS Nano, 4 (2010) 4174–4180.
- O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar,
Photodegradation of graphene oxide sheets by TiO2
nanoparticles after a photocatalytic reduction, J. Phys. Chem.
C, 114 (2010) 12955–12959.