References

  1. I. Ogashawara, Determination of phycocyanin from space—a bibliometric analysis, Remote Sens., 12 (2022) 567, doi: 10.3390/ rs12030567.
  2. E.M. Isenstein, D. Kim, M.-H. Park, Modeling for multitemporal cyanobacterial bloom dominance and distributions using landsat imagery, Ecol. Inf., 59 (2020) 101119, doi: 10.1016/j.ecoinf.2020.101119.
  3. B. Nowruzi, N. Bouaïcha, J.S. Metcalf, S.J. Porzani, O. Konur, Plant-cyanobacteria interactions: beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health, Phytochemistry, 192 (2021) 112959, doi: 10.1016/j.phytochem.2021.112959.
  4. L. Wang, T.R. Zhang, X.B. Jin, J.P. Xu, X.Y. Wang, H.Y. Zhang, J.B. Yu, Q. Sun, Z.Y. Zhao, Y.X. Xie, An approach of recursive timing deep belief network for algal bloom forecasting, Neural Comput. Appl., 32 (2020) 163–171.
  5. H.M. Li, Z.M. Jiang, G.H. Dong, L.Y. Wang, X. Huang, X. Gu, Y.J. Guo, Spatiotemporal coupling coordination analysis of social economy and resource environment of central cities in the Yellow River basin, Discrete Dyn. Nat. Soc., 2021 (2021) 6637631, doi: 10.1155/2021/6637631.
  6. U.A. Bhatti, Z. Zeeshan, M.M. Nizamani, S. Bazai, Z.Y. Yu, L.W. Yuan, Assessing the change of ambient air quality patterns in Jiangsu Province of China pre- to post-COVID-19, Chemosphere, 288 (2022) 132569, doi: 10.1016/j.chemosphere.2021.132569.
  7. W.M. Woelmer, R. Quinn Thomas, M.E. Lofton, R.P. McClure, H.L. Wander, C.C. Carey, Near-term phytoplankton forecasts reveal the effects of model time step and forecast horizon on predictability, Ecol. Appl., 32 (2022) e2642, doi: 10.1002/eap.2642.
  8. L. Wang, J.P. Kang, X.Y. Wang, J.P. Xua, X.B. Jin, H.Y. Zhang, J.B. Yu, Q. Sun, Z.Y. Zhao, L. Zheng, Formation mechanism time series modelling and expert system prediction of algal bloom, J. Environ. Prot. Ecol., 19 (2018) 1561–1572.
  9. X.Y. Wang, J. Jia, T.L. Su, Z.Y. Zhao, J.P. Xu, L. Wang, A fusion water quality soft-sensing method based on wasp model and its application in water eutrophication evaluation, J. Chem., 2018 (2018) 9616841, doi: 10.1155/2018/9616841.
  10. X.M. Fan, L.X. Song, D.B. Ji, J.K. Shen, D.F. Liu, Research on mechanism of algal blooms based on the critical depth theory, Environ. Sci. Technol., 40 (2017) 89–94.
  11. L. Wang, T.R. Zhang, J.P. Xu, J.B. Yu, X.Y. Wang, H.Y. Zhang, Z.Y. Zhao, An approach of improved dynamic deep belief nets modeling for algae bloom prediction, Cluster Comput., 22 (2019) 11713–11721.
  12. H. Yajima, J. Derot, Application of the random forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases, J. Hydroinf., 20 (2018) 206–220.
  13. W. Feki-Sahnoun, H. Njah, A. Hamza, N. Barraj, M. Mahfoudi, A. Rebai, M.B. Hassen, Using a naive Bayes classifier to explore the factors driving the harmful dinoflagellate Karenia selliformis blooms in a southeastern Mediterranean lagoon, Ocean Dyn., 70 (2020) 897–911.
  14. W. Ying, Gated recurrent unit based on feature attention mechanism for physical behavior recognition analysis, Comput. Sci. Inf. Eng., 26 (2023) 357–365.
  15. A.A. Kashyap, S. Raviraj, A. Devarakonda, S.R. Nayak K, K.V. Santhosh, S.J. Bhat, F. Galatioto, Traffic flow prediction models – a review of deep learning techniques, Cogent Eng., 9 (2022) 2010510, doi: 10.1080/23311916.2021.2010510.
  16. Y.L. Cun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015) 436–444.
  17. S. Dong, P. Wang, K. Abbas, A survey on deep learning and its applications, Comput. Sci. Rev., 40 (2021) 100379, doi: 10.1016/j.cosrev.2021.100379.
  18. J. Jin, Y.N. Zhang, Z. Hao, R.L. Xia, W.S. Yang, H.L. Yin, X.W. Zhang, Benchmarking data-driven rainfall-runoff modeling across 54 catchments in the Yellow River Basin: overfitting, calibration length, dry frequency, J. Hydrol.: Reg. Stud., 42 (2022) 101119, doi: 10.1016/j.ejrh.2022.101119.
  19. Y.R. Li, Z.F. Zhu, D.Q. Kong, H. Han, Y. Zhao, EA-LSTM: Evolutionary attention-based LSTM for time series prediction, Knowledge-Based Syst., 181 (2019) 104785, doi: 10.1016/j.knosys.2019.05.028.
  20. S. Liu, M. Li, Z. Zhang, B.H. Xiao, X.Z. Cao, Multimodal groundbased cloud classification using joint fusion convolutional neural network, Remote Sens., 10 (2018) 822, doi: 10.3390/rs10060822.
  21. L. Wang, X.Y. Wang, Z.Y. Zhao, Y.X. Wu, J.P. Xu, H.Y. Zhang, J.B. Yu, Q. Sun, Y.T. Bai, Multi-factor status prediction by 4D fractal CNN based on remote sensing images, Fractals, 30 (2022) 2240101, doi: 10.1142/S0218348X22401016.
  22. S.S. Hwang, G.W. Jeon, J.P. Jeong, J.Y. Lee, A novel time series based Seq2Seq model for temperature prediction in firing furnace process, Procedia Comput. Sci., 155 (2019) 9–26.
  23. U.A. Bhatti, Z.Y. Yu, J. Chanussot, Z. Zeeshan, L.W. Yuan, W. Luo, S.A. Nawa, Local similarity-based spatial–spectral fusion hyperspectral image classification with deep CNN and gabor filtering, IEEE Trans. Geosci. Remote Sens., 60 (2021) 1–15.
  24. C.H. Qi, S. Huang, X.F. Wang, Monitoring water quality parameters of Taihu Lake based on remote sensing images and LSTM-RNN, IEEE Access, 8 (2020) 188068–188081.
  25. L. Wang, Y.X. Wu, J.P. Xu, H.Y. Zhang, X.Y. Wang, J.B. Yu, Q. Sun, Z.Y. Zhao, Status prediction by 3D fractal net CNN based on remote sensing images, Fractals, 28 (2020) 2040018, doi: 10.1142/S0218348X20400186.
  26. Y.B. Ma, J.B. Wei, W.C. Tang, R.X. Tang, Explicit and stepwise models for spatiotemporal fusion of remote sensing images with deep neural networks, Int. J. Appl. Earth Obs. Geoinf., 105 (2021) 102611, doi: 10.1016/j.jag.2021.102611.
  27. H. Li, S. Gao, G.Y. Liu, D.L. Guo, C. Grecos, P. Ren, Visual prediction of typhoon clouds with hierarchical generative adversarial networks, IEEE Geosci. Remote Sens. Lett., 17 (2019) 1478–1482.
  28. M. Rüttgers, S.S. Lee, S.W. Jeon, D.Y. You, Prediction of a typhoon track using a generative adversarial network and satellite images, Sci. Rep.-UK, 9 (2019) 6057, doi: 10.1038/s41598-019-42339-y.
  29. A. Bihlo, A generative adversarial network approach to (ensemble) weather prediction, Neural Networks, 139 (2021) 1–16.
  30. P. Isola, J.-Y. Zhu, T.H. Zhou, A.A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 1125–1134.
  31. C. Zhang, J.H. Kim, Video object detection with twopath convolutional LSTM pyramid, IEEE Access, 8 (2020) 151681–151691.
  32. G.M. Zhu, L. Zhang, L. Yang, L. Mei, S.A.A. Shah, M. Bennamoun, P.Y. Shen, Redundancy and attention in convolutional LSTM for gesture recognition, IEEE Trans. Neural Networks Learn. Syst., 3 (2019) 1323–1335.
  33. Z.H. Hu, J.B. Zhou, K.J. Huang, E.Y. Zhang, A data-driven approach for traffic crash prediction: a case study in Ningbo, China, Int. J. Intell. Transp. Syst. Res., 20 (2022) 508–518.
  34. X.J. Shi, Z.R. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-C. Woo, Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, NIPS’15: Proc. 28th International Conference on Neural Information Processing Systems, Vol. 1, 2015, pp. 802–810.
  35. O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, Computer Vision and Pattern Recognition, Munich, Germany, 2015, pp. 234–241.
  36. X.J. Li, J.Q. Ding, J.J. Tang, F. Guo, Res2Unet: a multi-scale channel attention network for retinal vessel segmentation, Neural Comput. Appl., 34 (2022) 12001–12015.
  37. X.M. Li, H. Chen, X.J. Qi, Q. Dou, C.-W. Fu, P.A. Heng, H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes, IEEE Trans. Med. Imaging, 37 (2018) 2663–2674.
  38. J.Y. Yao, S.G. Jin, Multi-category segmentation of Sentinel-2 images based on the Swin UNet method, Remote Sens., 14 (2022) 3382, doi: 10.3390/rs14143382.
  39. H.-K. Kim, K.-Y. Yoo, H.-Y. Jung, Color image generation from LiDAR reflection data by using selected connection UNET, Remote Sens., 20 (2020) 3387, doi: 10.3390/s20123387.
  40. L. Wang, W. Li, X. Wang, J. Xu, Remote sensing image analysis and prediction based on improved Pix2Pix model for water environment protection of smart cities, PeerJ Comput. Sci., 9 (2023) 341–345.