References
- I. Ogashawara, Determination of phycocyanin from space—a
bibliometric analysis, Remote Sens., 12 (2022) 567, doi: 10.3390/
rs12030567.
- E.M. Isenstein, D. Kim, M.-H. Park, Modeling for multitemporal
cyanobacterial bloom dominance and distributions
using landsat imagery, Ecol. Inf., 59 (2020) 101119, doi: 10.1016/j.ecoinf.2020.101119.
- B. Nowruzi, N. Bouaïcha, J.S. Metcalf, S.J. Porzani, O. Konur,
Plant-cyanobacteria interactions: beneficial and harmful
effects of cyanobacterial bioactive compounds on soil-plant
systems and subsequent risk to animal and human health,
Phytochemistry, 192 (2021) 112959, doi: 10.1016/j.phytochem.2021.112959.
- L. Wang, T.R. Zhang, X.B. Jin, J.P. Xu, X.Y. Wang, H.Y. Zhang,
J.B. Yu, Q. Sun, Z.Y. Zhao, Y.X. Xie, An approach of recursive
timing deep belief network for algal bloom forecasting,
Neural Comput. Appl., 32 (2020) 163–171.
- H.M. Li, Z.M. Jiang, G.H. Dong, L.Y. Wang, X. Huang, X. Gu,
Y.J. Guo, Spatiotemporal coupling coordination analysis of
social economy and resource environment of central cities in
the Yellow River basin, Discrete Dyn. Nat. Soc., 2021 (2021)
6637631, doi: 10.1155/2021/6637631.
- U.A. Bhatti, Z. Zeeshan, M.M. Nizamani, S. Bazai,
Z.Y. Yu, L.W. Yuan, Assessing the change of ambient air
quality patterns in Jiangsu Province of China pre- to post-COVID-19, Chemosphere, 288 (2022) 132569, doi: 10.1016/j.chemosphere.2021.132569.
- W.M. Woelmer, R. Quinn Thomas, M.E. Lofton, R.P. McClure,
H.L. Wander, C.C. Carey, Near-term phytoplankton forecasts
reveal the effects of model time step and forecast horizon
on predictability, Ecol. Appl., 32 (2022) e2642, doi: 10.1002/eap.2642.
- L. Wang, J.P. Kang, X.Y. Wang, J.P. Xua, X.B. Jin, H.Y. Zhang,
J.B. Yu, Q. Sun, Z.Y. Zhao, L. Zheng, Formation mechanism time
series modelling and expert system prediction of algal bloom,
J. Environ. Prot. Ecol., 19 (2018) 1561–1572.
- X.Y. Wang, J. Jia, T.L. Su, Z.Y. Zhao, J.P. Xu, L. Wang, A fusion
water quality soft-sensing method based on wasp model and
its application in water eutrophication evaluation, J. Chem.,
2018 (2018) 9616841, doi: 10.1155/2018/9616841.
- X.M. Fan, L.X. Song, D.B. Ji, J.K. Shen, D.F. Liu, Research
on mechanism of algal blooms based on the critical depth
theory, Environ. Sci. Technol., 40 (2017) 89–94.
- L. Wang, T.R. Zhang, J.P. Xu, J.B. Yu, X.Y. Wang, H.Y. Zhang,
Z.Y. Zhao, An approach of improved dynamic deep belief
nets modeling for algae bloom prediction, Cluster Comput.,
22 (2019) 11713–11721.
- H. Yajima, J. Derot, Application of the random forest model
for chlorophyll-a forecasts in fresh and brackish water bodies
in Japan, using multivariate long-term databases, J. Hydroinf.,
20 (2018) 206–220.
- W. Feki-Sahnoun, H. Njah, A. Hamza, N. Barraj, M. Mahfoudi,
A. Rebai, M.B. Hassen, Using a naive Bayes classifier to
explore the factors driving the harmful dinoflagellate Karenia
selliformis blooms in a southeastern Mediterranean lagoon,
Ocean Dyn., 70 (2020) 897–911.
- W. Ying, Gated recurrent unit based on feature attention
mechanism for physical behavior recognition analysis,
Comput. Sci. Inf. Eng., 26 (2023) 357–365.
- A.A. Kashyap, S. Raviraj, A. Devarakonda, S.R. Nayak K,
K.V. Santhosh, S.J. Bhat, F. Galatioto, Traffic flow prediction
models – a review of deep learning techniques, Cogent Eng.,
9 (2022) 2010510, doi: 10.1080/23311916.2021.2010510.
- Y.L. Cun, Y. Bengio, G. Hinton, Deep learning, Nature,
521 (2015) 436–444.
- S. Dong, P. Wang, K. Abbas, A survey on deep learning
and its applications, Comput. Sci. Rev., 40 (2021) 100379,
doi: 10.1016/j.cosrev.2021.100379.
- J. Jin, Y.N. Zhang, Z. Hao, R.L. Xia, W.S. Yang, H.L. Yin,
X.W. Zhang, Benchmarking data-driven rainfall-runoff
modeling across 54 catchments in the Yellow River Basin:
overfitting, calibration length, dry frequency, J. Hydrol.: Reg.
Stud., 42 (2022) 101119, doi: 10.1016/j.ejrh.2022.101119.
- Y.R. Li, Z.F. Zhu, D.Q. Kong, H. Han, Y. Zhao, EA-LSTM:
Evolutionary attention-based LSTM for time series prediction,
Knowledge-Based Syst., 181 (2019) 104785, doi: 10.1016/j.knosys.2019.05.028.
- S. Liu, M. Li, Z. Zhang, B.H. Xiao, X.Z. Cao, Multimodal groundbased
cloud classification using joint fusion convolutional
neural network, Remote Sens., 10 (2018) 822, doi: 10.3390/rs10060822.
- L. Wang, X.Y. Wang, Z.Y. Zhao, Y.X. Wu, J.P. Xu, H.Y. Zhang,
J.B. Yu, Q. Sun, Y.T. Bai, Multi-factor status prediction by
4D fractal CNN based on remote sensing images, Fractals,
30 (2022) 2240101, doi: 10.1142/S0218348X22401016.
- S.S. Hwang, G.W. Jeon, J.P. Jeong, J.Y. Lee, A novel time series
based Seq2Seq model for temperature prediction in firing
furnace process, Procedia Comput. Sci., 155 (2019) 9–26.
- U.A. Bhatti, Z.Y. Yu, J. Chanussot, Z. Zeeshan, L.W. Yuan,
W. Luo, S.A. Nawa, Local similarity-based spatial–spectral
fusion hyperspectral image classification with deep CNN and
gabor filtering, IEEE Trans. Geosci. Remote Sens., 60 (2021)
1–15.
- C.H. Qi, S. Huang, X.F. Wang, Monitoring water quality
parameters of Taihu Lake based on remote sensing images
and LSTM-RNN, IEEE Access, 8 (2020) 188068–188081.
- L. Wang, Y.X. Wu, J.P. Xu, H.Y. Zhang, X.Y. Wang, J.B. Yu,
Q. Sun, Z.Y. Zhao, Status prediction by 3D fractal net CNN
based on remote sensing images, Fractals, 28 (2020) 2040018,
doi: 10.1142/S0218348X20400186.
- Y.B. Ma, J.B. Wei, W.C. Tang, R.X. Tang, Explicit and stepwise
models for spatiotemporal fusion of remote sensing images
with deep neural networks, Int. J. Appl. Earth Obs. Geoinf.,
105 (2021) 102611, doi: 10.1016/j.jag.2021.102611.
- H. Li, S. Gao, G.Y. Liu, D.L. Guo, C. Grecos, P. Ren, Visual
prediction of typhoon clouds with hierarchical generative
adversarial networks, IEEE Geosci. Remote Sens. Lett., 17 (2019)
1478–1482.
- M. Rüttgers, S.S. Lee, S.W. Jeon, D.Y. You, Prediction of a
typhoon track using a generative adversarial network and
satellite images, Sci. Rep.-UK, 9 (2019) 6057, doi: 10.1038/s41598-019-42339-y.
- A. Bihlo, A generative adversarial network approach to
(ensemble) weather prediction, Neural Networks, 139 (2021)
1–16.
- P. Isola, J.-Y. Zhu, T.H. Zhou, A.A. Efros, Image-to-Image
Translation with Conditional Adversarial Networks, Computer
Vision and Pattern Recognition, Honolulu, USA, 2017,
pp. 1125–1134.
- C. Zhang, J.H. Kim, Video object detection with twopath
convolutional LSTM pyramid, IEEE Access, 8 (2020)
151681–151691.
- G.M. Zhu, L. Zhang, L. Yang, L. Mei, S.A.A. Shah, M. Bennamoun,
P.Y. Shen, Redundancy and attention in convolutional LSTM
for gesture recognition, IEEE Trans. Neural Networks Learn.
Syst., 3 (2019) 1323–1335.
- Z.H. Hu, J.B. Zhou, K.J. Huang, E.Y. Zhang, A data-driven
approach for traffic crash prediction: a case study in Ningbo,
China, Int. J. Intell. Transp. Syst. Res., 20 (2022) 508–518.
- X.J. Shi, Z.R. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,
W.-C. Woo, Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting, NIPS’15:
Proc. 28th International Conference on Neural
Information Processing Systems, Vol. 1, 2015, pp. 802–810.
- O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional
Networks for Biomedical Image Segmentation, Computer
Vision and Pattern Recognition, Munich, Germany, 2015,
pp. 234–241.
- X.J. Li, J.Q. Ding, J.J. Tang, F. Guo, Res2Unet: a multi-scale
channel attention network for retinal vessel segmentation,
Neural Comput. Appl., 34 (2022) 12001–12015.
- X.M. Li, H. Chen, X.J. Qi, Q. Dou, C.-W. Fu, P.A. Heng,
H-DenseUNet: hybrid densely connected UNet for liver and
tumor segmentation from CT volumes, IEEE Trans. Med.
Imaging, 37 (2018) 2663–2674.
- J.Y. Yao, S.G. Jin, Multi-category segmentation of Sentinel-2
images based on the Swin UNet method, Remote Sens.,
14 (2022) 3382, doi: 10.3390/rs14143382.
- H.-K. Kim, K.-Y. Yoo, H.-Y. Jung, Color image generation from
LiDAR reflection data by using selected connection UNET,
Remote Sens., 20 (2020) 3387, doi: 10.3390/s20123387.
- L. Wang, W. Li, X. Wang, J. Xu, Remote sensing image analysis
and prediction based on improved Pix2Pix model for water
environment protection of smart cities, PeerJ Comput. Sci.,
9 (2023) 341–345.