References

  1. P. Chowdhury, T. Viraraghavan, A. Srinivasan, Biological treatment processes for fish processing wastewater — review, Bioresour. Technol., 101 (2010) 439–449.
  2. J. Zhao, L. Feng, G. Yang, J. Dai, J. Mu, Development of simultaneous nitrification-denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification, Bioresour. Technol., 243 (2017) 800–809.
  3. R.C. Jin, G.F. Yang, J.J. Yu, P. Zheng, The inhibition of the Anammox process: a review, Chem. Eng. J., 197 (2012) 67–79.
  4. S.W. Van Hulle, H.J. Vandeweyer, B.D. Meesschaert, P.A. Vanrolleghem, P. Dejans, A. Dumoulin, Engineering aspects and practical application of autotrophic nitrogen removal, Chem. Eng. J., 162 (2010) 1–20.
  5. I. Zekker, E. Rikmann, T. Tenno, L. Loorits, K. Kroon, H. Fritze, T. Tuomivirta, P. Vabamäe, M. Raudkivi, A. Mandel, S.S.C. Dc Rubin, T. Tenno, Nitric oxide for anammox recovery in a nitrite-inhibited deammonification system, Environ. Technol., 36 (2015) 2477–2487.
  6. J. Clement, J. Shrestha, J. Ehrenfeld, P. Jaffe, Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils, Soil Biol. Biochem., 37 (2005) 2323–2328.
  7. S. Huang, P.R. Jaffé, Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions, Biogeosci. Discuss., 12 (2015) 769–779.
  8. W.H. Yang, K.A. Weber, W.L. Silver, Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction, Nat. Geosci., 5 (2012) 538–541.
  9. L.J. Ding, X.L. An, S. Li, G.L. Zhang, Y.G. Zhu, Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence, Environ. Sci. Technol., 48 (2014) 10641–10647.
  10. Y. Qin, B. Ding, Z. Li, S. Chen, Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China, Environ. Pollut., 252 (2019) 119–127.
  11. X. Li, L. Hou, M. Liu, Y. Zheng, G. Yin, X. Lin, L. Cheng, Y. Li, X. Hu, Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland, Environ. Sci. Technol., 49 (2015) 11560–11568.
  12. G.-W. Zhou, X.-R. Yang, H. Li, C.W. Marshall, B.-X. Zheng, Y. Yan, J.-Q. Su, Y.-G. Zhu, Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction, Environ. Sci. Technol., 50 (2016) 9298–9307.
  13. B. Ding, Z. Li, Y. Qin, Nitrogen loss from anaerobic ammonium oxidation coupled to iron(III) reduction in a riparian zone, Environ. Pollut., 231 (2017) 379–386.
  14. J. Shrestha, J.J. Rich, J.G. Ehrenfeld, P.R. Jaffe, Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils, Soil Sci., 174 (2009) 156–164.
  15. E. Emilia Rios-Del Toro, E.I. Valenzuela, N.E. López-Lozano, M. Guadalupe Cortés-Martínez,
    M.A. Sánchez-Rodríguez, O. Calvario-Martínez, S. Sánchez-Carrillo, F.J. Cervantes, Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments, Biodegradation, 29 (2018) 429–442.
  16. Y. Yang, Y. Zhang, Y. Li, H. Zhao, H. Peng, Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds, Chem. Eng. J., 332 (2018) 711–716.
  17. Y. Yang, C. Xiao, Q. Yu, Z. Zhao, Y. Zhang, Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no need of anammox bacteria, Water Res., 189 (2020a) 116626, doi: 10.1016/j.watres.2020.116626.
  18. X. Wang, D. Shu, H. Yue, Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe(III) supplementation, Appl. Microbiol. Biotechnol., 100 (2016) 10147–10163.
  19. S. Yin, J. Li, H. Dong, Z. Qiang, Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogenrich saline wastewater with Fe(III) addition: nitrogen shock loading and community structure, Bioresour. Technol., 287 (2019) 121405, doi: 10.1016/j.biortech.2019.121405.
  20. L. Feng, J. Li, H. Ma, G. Chen, Effect of Fe(II) on simultaneous marine anammox and Feammox treating nitrogen-laden saline wastewater under low temperature: enhanced performance and kinetics, Desalination, 478 (2020) 114287, doi: 10.1016/j.desal.2019.114287.
  21. Z. Yao, C. Wang, N. Song, C. Wang, H. Jiang, Oxidation of ammonium in aerobic wastewater by anoxic ferric irondependent ammonium oxidation (Feammox) in a biofilm reactor, Desal. Water Treat., 173 (2020) 197–206.
  22. T.T. Zhu, W.X. Lai, Y.B. Zhang, Y.W. Liu, Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds, Sci. Total Environ., 804 (2022) 149965, doi: 10.1016/j.scitotenv.2021.149965.
  23. Y. Yang, Z. Jin, X. Quan, Y. Zhang, Transformation of nitrogen and iron species during nitrogen removal from wastewater via Feammox by adding ferrihydrite, ACS Sustainable Chem. Eng., 6 (2018) 14394–14402.
  24. X. Li, Y. Yuan, Y. Huang, H.W. Liu, Z. Bi, Y. Yuan, P.B. Yang, A novel method of simultaneous NH4+ and NO3 removal using Fe cycling as a catalyst: Feammox coupled with NAFO, Sci. Total Environ., 631 (2018) 153–157.
  25. B. Wang, L. Yang, Y. Liu, B. Sun, Removal of nitrogen from livestock wastewater by iron cycling under Feammox and NO3-dependent Fe(II) oxidation coupling reaction, Desal. Water Treat., 236 (2021) 164–170.
  26. C.P. Le, H.T. Nguyen, T.D. Nguyen, Q.H.M. Nguyen, H.T. Pham, H.T. Dinh, Ammonium and organic carbon co-removal under Feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment, Sci. Rep., 11 (2021) 784, doi: 10.1038/s41598-020-80057-y.
  27. W. Park, Y.K. Nam, M.J. Lee, T.H. Kim, Anaerobic ammoniaoxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium, Biotechnol. Bioprocess Eng., 14 (2009) 680–685.
  28. J. Carrera, T. Vicent, J. Lafuente, Effect of influent COD/N ratio on biological nitrogen removal (BNR) from highstrength ammonium industrial wastewater, Process Biochem., 39 (2004) 2035–2041.
  29. S. Atashgahi, B. Hornung, M.J. van der Waals, U.N. da Rocha, F. Hugenholtz, B. Nijsse, D. Molenaar, R. van Spanning, A.J.M. Stams, J. Gerritse, H. Smidt, A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways, Sci. Rep., 8 (2018) 4490, doi: 10.1038/s41598-018-22617-x.
  30. J.L. Nielsen, S. Juretschko, M. Wagner, P.H. Nielsen, Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography, Appl. Environ. Microbiol., 68 (2002) 4629–4636.
  31. S.A.B. Weelink, N.C.G. Tan, H. ten Broeke, C. van den Kieboom, W. van Doesburg, A.A. Langenhoff, J. Gerritse, H. Junca, A.J.M. Stams, Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor, Appl. Environ. Microbiol., 74 (2008) 6672–6681.
  32. S. Ratering, Iron Cycle in Italian Rice Field Soil: Localization of the Redox Processes and Characterization of the Involved Microorganisms, 1999.
  33. DIN-38406-5, German Standard Methods for the Examination of Water, Wastewater and Sludge, Cations (Group 5), 38406-Teil 5: Deutsches Institut fuer Normung, 1983.
  34. DIN-38406-E1, German Standard Methods for the Examination of Water, Wastewater and Sludge; Cations (Group E); Determination of Iron (E 1), 1983-05: Deutsches Institut fuer Normung, 1983.
  35. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington D.C., USA, 1998.
  36. D. Ma, J. Wang, H. Li, J. Che, Z. Yue, Simultaneous removal of COD and NH4+–N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox, Environ. Pollut., 314 (2022) 120213, doi: 10.1016/j.envpol.2022.120213.
  37. V. Matějů, S. Čižinská, J. Krejčí, T. Janoch, Biological water denitrification – a review, Enzyme Microb. Technol., 14 (1992) 170–183.
  38. A.J. Coby, F.W. Picardal, Inhibition of NO3 and NO2 reduction by microbial Fe(III) reduction: evidence of a reaction between NO2 and cell surface-bound Fe2+, Appl. Environ. Microbiol., 71 (2005) 5267–5274.
  39. L.C. Jones, B. Peters, J.S. Lezama Pacheco, K.L. Casciotti, S. Fendorf, Stable isotopes and iron oxide mineral products as markers of chemodenitrification, Environ. Sci. Technol., 49 (2015) 3444–3452.
  40. D. Hafenbradl, M. Keller, R. Dirmeier, R. Rachel, P. Roßnagel, S. Burggraf, H. Huber, K.O. Stetter, Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions, Arch. Microbiol., 5 (1996) 308–314.
  41. K.L. Straub, M. Benz, B. Schink, F. Widdel, Anaerobic, nitrate-dependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol., 4 (1996) 1458–1460.
  42. M.C. Wentzel, M.F. Ubisi, M.T. Lakay, G.A. Ekama, Incorporation of inorganic material in anoxic/aerobic-activated sludge system mixed liquor, Water Res., 36 (2002) 5074–5082.