References
- P. Chowdhury, T. Viraraghavan, A. Srinivasan, Biological
treatment processes for fish processing wastewater — review,
Bioresour. Technol., 101 (2010) 439–449.
- J. Zhao, L. Feng, G. Yang, J. Dai, J. Mu, Development of
simultaneous nitrification-denitrification (SND) in biofilm
reactors with partially coupled a novel biodegradable carrier
for nitrogen-rich water purification, Bioresour. Technol.,
243 (2017) 800–809.
- R.C. Jin, G.F. Yang, J.J. Yu, P. Zheng, The inhibition of the
Anammox process: a review, Chem. Eng. J., 197 (2012) 67–79.
- S.W. Van Hulle, H.J. Vandeweyer, B.D. Meesschaert,
P.A. Vanrolleghem, P. Dejans, A. Dumoulin, Engineering
aspects and practical application of autotrophic nitrogen
removal, Chem. Eng. J., 162 (2010) 1–20.
- I. Zekker, E. Rikmann, T. Tenno, L. Loorits, K. Kroon,
H. Fritze, T. Tuomivirta, P. Vabamäe, M. Raudkivi, A. Mandel,
S.S.C. Dc Rubin, T. Tenno, Nitric oxide for anammox recovery in
a nitrite-inhibited deammonification system, Environ. Technol.,
36 (2015) 2477–2487.
- J. Clement, J. Shrestha, J. Ehrenfeld, P. Jaffe, Ammonium
oxidation coupled to dissimilatory reduction of iron under
anaerobic conditions in wetland soils, Soil Biol. Biochem.,
37 (2005) 2323–2328.
- S. Huang, P.R. Jaffé, Characterization of incubation experiments
and development of an enrichment culture capable of
ammonium oxidation under iron-reducing conditions,
Biogeosci. Discuss., 12 (2015) 769–779.
- W.H. Yang, K.A. Weber, W.L. Silver, Nitrogen loss from soil
through anaerobic ammonium oxidation coupled to iron
reduction, Nat. Geosci., 5 (2012) 538–541.
- L.J. Ding, X.L. An, S. Li, G.L. Zhang, Y.G. Zhu, Nitrogen loss
through anaerobic ammonium oxidation coupled to iron
reduction from paddy soils in a chronosequence, Environ. Sci.
Technol., 48 (2014) 10641–10647.
- Y. Qin, B. Ding, Z. Li, S. Chen, Variation of Feammox following
ammonium fertilizer migration in a wheat-rice rotation
area, Taihu Lake, China, Environ. Pollut., 252 (2019) 119–127.
- X. Li, L. Hou, M. Liu, Y. Zheng, G. Yin, X. Lin, L. Cheng, Y. Li,
X. Hu, Evidence of nitrogen loss from anaerobic ammonium
oxidation coupled with ferric iron reduction in an intertidal
wetland, Environ. Sci. Technol., 49 (2015) 11560–11568.
- G.-W. Zhou, X.-R. Yang, H. Li, C.W. Marshall, B.-X. Zheng,
Y. Yan, J.-Q. Su, Y.-G. Zhu, Electron shuttles enhance
anaerobic ammonium oxidation coupled to iron(III) reduction,
Environ. Sci. Technol., 50 (2016) 9298–9307.
- B. Ding, Z. Li, Y. Qin, Nitrogen loss from anaerobic ammonium
oxidation coupled to iron(III) reduction in a riparian zone,
Environ. Pollut., 231 (2017) 379–386.
- J. Shrestha, J.J. Rich, J.G. Ehrenfeld, P.R. Jaffe, Oxidation
of ammonium to nitrite under iron-reducing conditions in
wetland soils, Soil Sci., 174 (2009) 156–164.
- E. Emilia Rios-Del Toro, E.I. Valenzuela, N.E. López-Lozano,
M. Guadalupe Cortés-Martínez,
M.A. Sánchez-Rodríguez,
O. Calvario-Martínez, S. Sánchez-Carrillo, F.J. Cervantes,
Anaerobic ammonium oxidation linked to sulfate and ferric
iron reduction fuels nitrogen loss in marine sediments,
Biodegradation, 29 (2018) 429–442.
- Y. Yang, Y. Zhang, Y. Li, H. Zhao, H. Peng, Nitrogen removal
during anaerobic digestion of wasted activated sludge under
supplementing Fe(III) compounds, Chem. Eng. J., 332 (2018)
711–716.
- Y. Yang, C. Xiao, Q. Yu, Z. Zhao, Y. Zhang, Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no
need of anammox bacteria, Water Res., 189 (2020a) 116626,
doi: 10.1016/j.watres.2020.116626.
- X. Wang, D. Shu, H. Yue, Taxonomical and functional
microbial community dynamics in an Anammox-ASBR system
under different Fe(III) supplementation, Appl. Microbiol.
Biotechnol., 100 (2016) 10147–10163.
- S. Yin, J. Li, H. Dong, Z. Qiang, Enhanced nitrogen removal
through marine anammox bacteria (MAB) treating nitrogenrich
saline wastewater with Fe(III) addition: nitrogen shock
loading and community structure, Bioresour. Technol.,
287 (2019) 121405, doi: 10.1016/j.biortech.2019.121405.
- L. Feng, J. Li, H. Ma, G. Chen, Effect of Fe(II) on simultaneous
marine anammox and Feammox treating nitrogen-laden
saline wastewater under low temperature: enhanced
performance and kinetics, Desalination, 478 (2020) 114287,
doi: 10.1016/j.desal.2019.114287.
- Z. Yao, C. Wang, N. Song, C. Wang, H. Jiang, Oxidation of
ammonium in aerobic wastewater by anoxic ferric irondependent
ammonium oxidation (Feammox) in a biofilm
reactor, Desal. Water Treat., 173 (2020) 197–206.
- T.T. Zhu, W.X. Lai, Y.B. Zhang, Y.W. Liu, Feammox process
driven anaerobic ammonium removal of wastewater treatment
under supplementing Fe(III) compounds, Sci. Total Environ.,
804 (2022) 149965, doi: 10.1016/j.scitotenv.2021.149965.
- Y. Yang, Z. Jin, X. Quan, Y. Zhang, Transformation of nitrogen
and iron species during nitrogen removal from wastewater
via Feammox by adding ferrihydrite, ACS Sustainable
Chem. Eng., 6 (2018) 14394–14402.
- X. Li, Y. Yuan, Y. Huang, H.W. Liu, Z. Bi, Y. Yuan, P.B. Yang,
A novel method of simultaneous NH4+ and NO3– removal
using Fe cycling as a catalyst: Feammox coupled with NAFO,
Sci. Total Environ., 631 (2018) 153–157.
- B. Wang, L. Yang, Y. Liu, B. Sun, Removal of nitrogen from
livestock wastewater by iron cycling under Feammox and NO3–-dependent Fe(II) oxidation coupling reaction, Desal. Water
Treat., 236 (2021) 164–170.
- C.P. Le, H.T. Nguyen, T.D. Nguyen, Q.H.M. Nguyen, H.T. Pham,
H.T. Dinh, Ammonium and organic carbon co-removal under
Feammox-coupled-with-heterotrophy condition as an efficient
approach for nitrogen treatment, Sci. Rep., 11 (2021) 784,
doi: 10.1038/s41598-020-80057-y.
- W. Park, Y.K. Nam, M.J. Lee, T.H. Kim, Anaerobic ammoniaoxidation
coupled with Fe3+ reduction by an anaerobic culture
from a piggery wastewater acclimated to NH4+/Fe3+ medium,
Biotechnol. Bioprocess Eng., 14 (2009) 680–685.
- J. Carrera, T. Vicent, J. Lafuente, Effect of influent COD/N
ratio on biological nitrogen removal (BNR) from highstrength
ammonium industrial wastewater, Process Biochem.,
39 (2004) 2035–2041.
- S. Atashgahi, B. Hornung, M.J. van der Waals, U.N. da Rocha,
F. Hugenholtz, B. Nijsse, D. Molenaar, R. van Spanning,
A.J.M. Stams, J. Gerritse, H. Smidt, A benzene-degrading
nitrate-reducing microbial consortium displays aerobic and
anaerobic benzene degradation pathways, Sci. Rep., 8 (2018)
4490, doi: 10.1038/s41598-018-22617-x.
- J.L. Nielsen, S. Juretschko, M. Wagner, P.H. Nielsen, Abundance
and phylogenetic affiliation of iron reducers in activated
sludge as assessed by fluorescence in situ hybridization and
microautoradiography, Appl. Environ. Microbiol., 68 (2002)
4629–4636.
- S.A.B. Weelink, N.C.G. Tan, H. ten Broeke, C. van den Kieboom,
W. van Doesburg, A.A. Langenhoff, J. Gerritse, H. Junca,
A.J.M. Stams, Isolation and characterization of Alicycliphilus
denitrificans strain BC, which grows on benzene with chlorate
as the electron acceptor, Appl. Environ. Microbiol., 74 (2008)
6672–6681.
- S. Ratering, Iron Cycle in Italian Rice Field Soil: Localization
of the Redox Processes and Characterization of the
Involved Microorganisms, 1999.
- DIN-38406-5, German Standard Methods for the Examination
of Water, Wastewater and Sludge, Cations (Group 5),
38406-Teil 5: Deutsches Institut fuer Normung, 1983.
- DIN-38406-E1, German Standard Methods for the Examination
of Water, Wastewater and Sludge; Cations (Group E);
Determination of Iron (E 1), 1983-05: Deutsches Institut fuer
Normung, 1983.
- APHA, Standard Methods for the Examination of Water
and Wastewater, American Public Health Association,
Washington D.C., USA, 1998.
- D. Ma, J. Wang, H. Li, J. Che, Z. Yue, Simultaneous removal
of COD and NH4+–N from domestic sewage by a single-stage
up-flow anaerobic biological filter based on Feammox, Environ.
Pollut., 314 (2022) 120213, doi: 10.1016/j.envpol.2022.120213.
- V. Matějů, S. Čižinská, J. Krejčí, T. Janoch, Biological water
denitrification – a review, Enzyme Microb. Technol., 14 (1992)
170–183.
- A.J. Coby, F.W. Picardal, Inhibition of NO3– and NO2– reduction
by microbial Fe(III) reduction: evidence of a reaction
between NO2– and cell surface-bound Fe2+, Appl. Environ.
Microbiol., 71 (2005) 5267–5274.
- L.C. Jones, B. Peters, J.S. Lezama Pacheco, K.L. Casciotti,
S. Fendorf, Stable isotopes and iron oxide mineral products
as markers of chemodenitrification, Environ. Sci. Technol.,
49 (2015) 3444–3452.
- D. Hafenbradl, M. Keller, R. Dirmeier, R. Rachel, P. Roßnagel,
S. Burggraf, H. Huber, K.O. Stetter, Ferroglobus placidus gen.
nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes
Fe2+ at neutral pH under anoxic conditions, Arch. Microbiol.,
5 (1996) 308–314.
- K.L. Straub, M. Benz, B. Schink, F. Widdel, Anaerobic,
nitrate-dependent microbial oxidation of ferrous iron, Appl.
Environ. Microbiol., 4 (1996) 1458–1460.
- M.C. Wentzel, M.F. Ubisi, M.T. Lakay, G.A. Ekama, Incorporation
of inorganic material in anoxic/aerobic-activated
sludge system mixed liquor, Water Res., 36 (2002) 5074–5082.