References

  1. D. Wu, Z. Wei, T.A. Mohamed, G. Zheng, F. Qu, F. Wang, Y. Zhao, C. Song, Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives, Chemosphere, 286 (2022) 131635, doi: 10.1016/j.chemosphere.2021.131635.
  2. C. Huang, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, M. Cheng, J. Wan, L. Hu, Y. Zhang, Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting, Bioresour. Technol., 243 (2017) 294–303.
  3. L. Zhang, J. Zhang, G. Zeng, H. Dong, Y. Chen, C. Huang, Y. Zhu, R. Xu, Y. Cheng, K. Hou, Multivariate relationships between microbial communities and environmental variables during co-composting of sewage sludge and agricultural waste in the presence of PVP-AgNPs, Bioresour. Technol., 261 (2018) 10–18.
  4. T. Liu, S.K. Awasthi, S. Qin, H. Liu, M.K. Awasthi, Y. Zhou, M. Jiao, A. Pandey, S. Varjani, Z. Zhang, Conversion food waste and sawdust into compost employing black soldier fly larvae (diptera: Stratiomyidae) under the optimized condition, Chemosphere, 272 (2021) 129931, doi: 10.1016/j.chemosphere.2021.129931.
  5. X. Ren, Q. Wang, X. Chen, Y. Zhang, Y. Sun, R. Li, J. Li, Z. Zhang, Elucidating the optimum added dosage of diatomite during co-composting of pig manure and sawdust: carbon dynamics and microbial community, Sci. Total Environ., 777 (2021) 146058, doi: 10.1016/j.scitotenv.2021.146058.
  6. K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, J. Biosci. Bioeng., 106 (2008) 528–536.
  7. T. Fu, H. Shangguan, J. Wu, J. Tang, H. Yuan, S. Zhou, Insight into the synergistic effects of conductive biochar for accelerating maturation during electric field-assisted aerobic composting, Bioresour. Technol., 337 (2021) 125359, doi: 10.1016/j.biortech.2021.125359.
  8. S. Wu, H. He, X. Inthapanya, C. Yang, L. Lu, G. Zeng, Z. Han, Role of biochar on composting of organic wastes and remediation of contaminated soils—a review, Environ. Sci. Pollut. Res., 24 (2017) 16560–16577.
  9. Y. Liu, X. Li, S. Wu, Z. Tan, C. Yang, Enhancing anaerobic digestion process with addition of conductive materials, Chemosphere, 278 (2021) 130449, doi: 10.1016/j.chemosphere.2021.130449.
  10. Q. Zhou, X. Li, S. Wu, Y. Zhong, C. Yang, Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion, Trends Biotechnol., 39 (2021) 8–11.
  11. J. Tang, X. Li, W. Zhao, Y. Wang, P. Cui, R.J. Zeng, L. Yu, S. Zhou, Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions, Bioresour. Technol., 279 (2019) 234–242.
  12. J. Wu, Y. Zhao, H. Yu, D. Wei, T. Yang, Z. Wei, Q. Lu, X. Zhang, Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure, Sci. Total Environ., 658 (2019) 510–520.
  13. Y. Wei, D. Wu, D. Wei, Y. Zhao, J. Wu, X. Xie, R. Zhang, Z. Wei, Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities, Bioresour. Technol., 271 (2019) 66–74.
  14. Y. Cao, X. Wang, X. Zhang, T. Misselbrook, Z. Bai, L. Ma, An electric field immobilizes heavy metals through promoting combination with humic substances during composting, Bioresour. Technol., 330 (2021) 124996, doi: 10.1016/j. biortech.2021.124996.
  15. T. Liitiä, S.L. Maunu, B. Hortling, T. Tamminen, O. Pekkala, A. Varhimo, Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solidstate NMR spectroscopic methods, Cellulose, 10 (2003) 307–316.
  16. Y. Hong, W. Shi, H. Wang, D. Ma, Y. Ren, Y. Wang, Q. Li, B. Gao, Mechanisms of Escherichia coli inactivation during solar-driven photothermal disinfection, Environ. Sci.: Nano, 9 (2022) 1000–1010.
  17. H. Xu, Y. Zhu, M. Du, Y. Wang, S. Ju, R. Ma, Z. Jiao, Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma, Water Res., 188 (2021) 116513, doi: 10.1016/j.watres.2020.116513.
  18. T. Ansari, G. Chandra, P. Gupta, G. Joshi, V. Rana, Synthesis of pine needle cyanoethyl cellulose using Taguchi L25 orthogonal array, Ind. Crops Prod., 191 (2023) 115973, doi: 10.1016/j.indcrop.2022.115973.
  19. H. Zhao, J.H. Kwak, Z.C. Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydr. Polym., 68 (2007) 235–241.
  20. X. Guo, Y. Wu, IN SITU visualization of water adsorption in cellulose nanofiber film with micrometer spatial resolution using micro-FTIR imaging, J. Wood Chem. Technol., 38 (2018) 361–370.
  21. X. Zheng, J. Tang, N. Lai, Influence of electric field strength on the microbial degradation of petroleum hydrocarbons, J. Chem. Technol. Biotechnol., 96 (2021) 1573–1579.
  22. S.-H. Kim, H.-Y. Han, Y.-J. Lee, C.W. Kim, J.-W. Yang, Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil, Sci. Total Environ., 408 (2010) 3162–3168.
  23. M. Hakoda, Y. Hirota, Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field, Bioprocess. Biosyst. Eng., 36 (2013) 1219–1227.
  24. S. Dehghani, A. Rezaee, S. Hosseinkhani, Effect of alternating electrical current on denitrifying bacteria in a microbial electrochemical system: biofilm viability and ATP assessment, Environ. Sci. Pollut. Res., 25 (2018) 33591–33598.
  25. H. Feng, X. Zhang, K. Guo, E. Vaiopoulou, D. Shen, Y. Long, J. Yin, M. Wang, Electrical stimulation improves microbial salinity resistance and organofluorine removal in bioelectrochemical systems, Appl. Environ. Microbiol., 81 (2015) 3737–3744.
  26. G. Lear, M.J. Harbottle, C.J. van der Gast, S.A. Jackman, C.J. Knowles, G. Sills, I.P. Thompson, The effect of electrokinetics on soil microbial communities, Soil Biol. Biochem., 36 (2004) 1751–1760.
  27. G. Beretta, A.F. Mastorgio, L. Pedrali, S. Saponaro, E. Sezenna, The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation, Rev. Environ. Sci. Bio/Technol., 18 (2019) 29–75.