References
- D. Wu, Z. Wei, T.A. Mohamed, G. Zheng, F. Qu, F. Wang,
Y. Zhao, C. Song, Lignocellulose biomass bioconversion
during composting: mechanism of action of lignocellulase,
pretreatment methods and future perspectives, Chemosphere,
286 (2022) 131635, doi: 10.1016/j.chemosphere.2021.131635.
- C. Huang, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, M. Cheng,
J. Wan, L. Hu, Y. Zhang, Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in
lead-contaminated agricultural waste composting, Bioresour.
Technol., 243 (2017) 294–303.
- L. Zhang, J. Zhang, G. Zeng, H. Dong, Y. Chen, C. Huang,
Y. Zhu, R. Xu, Y. Cheng, K. Hou, Multivariate relationships
between microbial communities and environmental variables
during co-composting of sewage sludge and agricultural waste
in the presence of PVP-AgNPs, Bioresour. Technol., 261 (2018)
10–18.
- T. Liu, S.K. Awasthi, S. Qin, H. Liu, M.K. Awasthi, Y. Zhou,
M. Jiao, A. Pandey, S. Varjani, Z. Zhang, Conversion food
waste and sawdust into compost employing black soldier
fly larvae (diptera: Stratiomyidae) under the optimized
condition, Chemosphere, 272 (2021) 129931, doi: 10.1016/j.chemosphere.2021.129931.
- X. Ren, Q. Wang, X. Chen, Y. Zhang, Y. Sun, R. Li, J. Li, Z. Zhang,
Elucidating the optimum added dosage of diatomite during
co-composting of pig manure and sawdust: carbon dynamics
and microbial community, Sci. Total Environ., 777 (2021) 146058,
doi: 10.1016/j.scitotenv.2021.146058.
- K. Watanabe, Recent developments in microbial fuel cell
technologies for sustainable bioenergy, J. Biosci. Bioeng.,
106 (2008) 528–536.
- T. Fu, H. Shangguan, J. Wu, J. Tang, H. Yuan, S. Zhou, Insight
into the synergistic effects of conductive biochar for accelerating
maturation during electric field-assisted aerobic composting,
Bioresour. Technol., 337 (2021) 125359, doi: 10.1016/j.biortech.2021.125359.
- S. Wu, H. He, X. Inthapanya, C. Yang, L. Lu, G. Zeng,
Z. Han, Role of biochar on composting of organic wastes and
remediation of contaminated soils—a review, Environ. Sci.
Pollut. Res., 24 (2017) 16560–16577.
- Y. Liu, X. Li, S. Wu, Z. Tan, C. Yang, Enhancing anaerobic digestion
process with addition of conductive materials, Chemosphere,
278 (2021) 130449, doi: 10.1016/j.chemosphere.2021.130449.
- Q. Zhou, X. Li, S. Wu, Y. Zhong, C. Yang, Enhanced strategies
for antibiotic removal from swine wastewater in anaerobic
digestion, Trends Biotechnol., 39 (2021) 8–11.
- J. Tang, X. Li, W. Zhao, Y. Wang, P. Cui, R.J. Zeng, L. Yu, S. Zhou,
Electric field induces electron flow to simultaneously enhance
the maturity of aerobic composting and mitigate greenhouse
gas emissions, Bioresour. Technol., 279 (2019) 234–242.
- J. Wu, Y. Zhao, H. Yu, D. Wei, T. Yang, Z. Wei, Q. Lu, X. Zhang,
Effects of aeration rates on the structural changes in humic
substance during co-composting of digestates and chicken
manure, Sci. Total Environ., 658 (2019) 510–520.
- Y. Wei, D. Wu, D. Wei, Y. Zhao, J. Wu, X. Xie, R. Zhang, Z. Wei,
Improved lignocellulose-degrading performance during straw
composting from diverse sources with actinomycetes inoculation
by regulating the key enzyme activities, Bioresour.
Technol., 271 (2019) 66–74.
- Y. Cao, X. Wang, X. Zhang, T. Misselbrook, Z. Bai, L. Ma, An
electric field immobilizes heavy metals through promoting
combination with humic substances during composting,
Bioresour. Technol., 330 (2021) 124996, doi: 10.1016/j.
biortech.2021.124996.
- T. Liitiä, S.L. Maunu, B. Hortling, T. Tamminen, O. Pekkala,
A. Varhimo, Cellulose crystallinity and ordering of
hemicelluloses in pine and birch pulps as revealed by solidstate
NMR spectroscopic methods, Cellulose, 10 (2003) 307–316.
- Y. Hong, W. Shi, H. Wang, D. Ma, Y. Ren, Y. Wang, Q. Li,
B. Gao, Mechanisms of Escherichia coli inactivation during
solar-driven photothermal disinfection, Environ. Sci.: Nano,
9 (2022) 1000–1010.
- H. Xu, Y. Zhu, M. Du, Y. Wang, S. Ju, R. Ma, Z. Jiao, Subcellular
mechanism of microbial inactivation during water disinfection
by cold atmospheric-pressure plasma, Water Res., 188 (2021)
116513, doi: 10.1016/j.watres.2020.116513.
- T. Ansari, G. Chandra, P. Gupta, G. Joshi, V. Rana, Synthesis of
pine needle cyanoethyl cellulose using Taguchi L25 orthogonal
array, Ind. Crops Prod., 191 (2023) 115973, doi: 10.1016/j.indcrop.2022.115973.
- H. Zhao, J.H. Kwak, Z.C. Zhang, H.M. Brown, B.W. Arey,
J.E. Holladay, Studying cellulose fiber structure by SEM,
XRD, NMR and acid hydrolysis, Carbohydr. Polym., 68 (2007)
235–241.
- X. Guo, Y. Wu, IN SITU visualization of water adsorption in
cellulose nanofiber film with micrometer spatial resolution
using micro-FTIR imaging, J. Wood Chem. Technol., 38 (2018)
361–370.
- X. Zheng, J. Tang, N. Lai, Influence of electric field strength
on the microbial degradation of petroleum hydrocarbons,
J. Chem. Technol. Biotechnol., 96 (2021) 1573–1579.
- S.-H. Kim, H.-Y. Han, Y.-J. Lee, C.W. Kim, J.-W. Yang, Effect of
electrokinetic remediation on indigenous microbial activity
and community within diesel contaminated soil, Sci. Total
Environ., 408 (2010) 3162–3168.
- M. Hakoda, Y. Hirota, Correlation between dielectric property
by dielectrophoretic levitation and growth activity of cells
exposed to electric field, Bioprocess. Biosyst. Eng., 36 (2013)
1219–1227.
- S. Dehghani, A. Rezaee, S. Hosseinkhani, Effect of alternating
electrical current on denitrifying bacteria in a microbial
electrochemical system: biofilm viability and ATP assessment,
Environ. Sci. Pollut. Res., 25 (2018) 33591–33598.
- H. Feng, X. Zhang, K. Guo, E. Vaiopoulou, D. Shen, Y. Long, J. Yin,
M. Wang, Electrical stimulation improves microbial salinity
resistance and organofluorine removal in bioelectrochemical
systems, Appl. Environ. Microbiol., 81 (2015) 3737–3744.
- G. Lear, M.J. Harbottle, C.J. van der Gast, S.A. Jackman,
C.J. Knowles, G. Sills, I.P. Thompson, The effect of
electrokinetics on soil microbial communities, Soil Biol.
Biochem., 36 (2004) 1751–1760.
- G. Beretta, A.F. Mastorgio, L. Pedrali, S. Saponaro, E. Sezenna,
The effects of electric, magnetic and electromagnetic fields
on microorganisms in the perspective of bioremediation,
Rev. Environ. Sci. Bio/Technol., 18 (2019) 29–75.