References

  1. A. Quarteroni, Mathematical models in science and engineering, Not. AMS, 56 (2009) 10–19.
  2. D. Hocking, J.M. Nougués, J.C. Rodríguez, S. Sama, Chapter 3.3 – Simulation, Design and Analysis, B. Braunschweig, R. Gani, Eds., Computer Aided Chemical Engineering, P.O. Box: 211.1000 AE, Amsterdam, The Netherlands, 2002, pp. 165–191.
  3. S. Pierucci, G. Buzzi Ferraris, 20th European Symposium of Computer Aided Process Engineering, Radarweg 29, P.O. BOX: 211, 1000AE, Amsterdam, The Netherlands, Linacre House, Jordan Hill, Oxford OX28DP, UK, 2010, pp. 1–1342.
  4. A. Fetimi, A. Dâas, Y. Benguerba, S. Merouani, M. Hamachi, O. Kebiche-Senhadji, O. Hamdaoui, Optimization and prediction of safranin-O cationic dye removal from aqueous solution by emulsion liquid membrane (ELM) using artificial neural network-particle swarm optimization (ANN-PSO) hybrid model and response surface methodology (RSM), J. Environ. Chem. Eng., 9 (2021) 105837, doi: 10.1016/j.jece.2021.105837.
  5. F.Z. Addar, S. El-Ghzizel, M. Tahaikt, M. Belfaquir, M. Taky, A. Elmidaoui, Fluoride removal by nanofiltration: experimentation, modelling and prediction based on the surface response method, Desal. Water Treat., 240 (2021) 75–88.
  6. G.M. Henkin, A.A. Shananin, Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations, J. Math. Pures Appl., 83 (2004) 1457–1500.
  7. O. Martin, L’Enquête et ses méthodes: l’analyse de données quantitatives, Paris, Armand Colin, 2005; 2009.
  8. R.J. Fox, D. Elgart, S. Christopher Davis, Bayesian credible intervals for response surface optima, J. Stat. Plann. Inference, 139 (2009) 2498–2501.
  9. S. Ahmadi, M. Mesbah, C.A. Igwegbe, C.D. Ezeliora, C. Osagie, N.A. Khan, G.L. Dotto, M. Salari, M.H. Dehghani, Sono electrochemical synthesis of LaFeO3 nanoparticles for the removal of fluoride: optimization and modeling using RSM, ANN and GA tools, J. Environ. Chem. Eng., 9 (2021) 105320,
    doi: 10.1016/j.jece.2021.105320.
  10. S. Chellapan, D. Datta, S. Kumar, H. Uslu, Statistical modeling and optimization of itaconic acid reactive extraction using response surface methodology (RSM) and artificial neural network (ANN), Chem. Data Collect., 37 (2022) 100806, doi: 10.1016/j.cdc.2021.100806.
  11. J. Prakash Maran, B. Priya, Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil, Ultrason. Sonochem., 23 (2015) 192–200.
  12. I. Salehi, M. Shirani, A. Semnani, M. Hassani, S. Habibollahi, Comparative study between response surface methodology and artificial neural network for adsorption of crystal violet on magnetic activated carbon, Arabian J. Sci. Eng., 41 (2016) 2611–2621.
  13. P. Naderi, M. Shirani, A. Semnani, A. Goli, Efficient removal of crystal violet from aqueous solutions with centaurea stem as a novel biodegradable bioadsorbent using response surface methodology and simulated annealing: kinetic, isotherm and thermodynamic studies, Ecotoxicol. Environ. Saf., 163 (2018) 372–381.
  14. A. Ghazali, M. Shirani, A. Semnani, V. Zare-Shahabadi, M. Nekoeinia, Optimization of crystal violet adsorption onto date palm leaves as a potent biosorbent from aqueous solutions using response surface methodology and ant colony, J. Environ. Chem. Eng., 6 (2018) 3942–3950.
  15. E. Alian, A. Semnani, A. Firooz, M. Shirani, B. Azmoon, Application of response surface methodology and genetic algorithm for optimization and determination of iron in food samples by dispersive liquid–liquid microextraction coupled UV–visible spectrophotometry, Arabian J. Sci. Eng., 43 (2018) 229–240.
  16. M. Zait, F.Z. Addar, N. Elfilali, M. Tahaikt, A. Elmidaoui, M. Taky, Analysis and optimization of operating conditions on ultrafiltration of landfill leachate using a response surface methodological approach, Desal. Water Treat., 257 (2022) 64–75.
  17. M. Shirani, A. Semnani, S. Habibollahi, H. Haddadi, M. Narimani, Synthesis and application of magnetic NaY zeolite composite immobilized with ionic liquid for adsorption desulfurization of fuel using response surface methodology, J. Porous Mater., 23 (2016) 701–712.
  18. F.Z. Addar, B. Fahid, M. Belfaquir, M. Tahaikt, A. Elmidaoui, M. Taky, Modeling of fluoride removal by nanofiltration: coupled film theory model with Nernst–Planck equation and artificial neural network, Desal. Water Treat., 257 (2022) 76–90.
  19. M. Shirani, A. Akbari, A. Goli, Application of a novel highperformance nano biosorbent for removal of anionic dyes from aqueous solutions using shuffled frog leaping algorithm: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 203 (2020) 388–402.
  20. E. Kazemi, Y. Yamini, S. Seidi, A. Mohammadi, Determination of myclobutanil in food samples using homogeneous liquid–liquid microextraction via flotation assistance and gas chromatography-mass spectrometry using artificial neural network, Int. J. Environ. Anal. Chem., 98 (2018) 271–285.
  21. M. Shirani, A. Akbari, M. Hassani, A. Goli, S. Habibollahi, P. Akbarian, Homogeneous liquid–liquid microextraction via flotation assistance coupled with gas chromatography-mass spectrometry for determination of myclobutanil in cucumber, tomato, grape, and strawberry using genetic algorithm, Int. J. Environ. Anal. Chem., 98 (2018) 271–285.
  22. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Removal of fluoride from aqueous solution by adsorption on apatitic tricalcium phosphate using Box–Behnken design and desirability function, Appl. Surf. Sci., 258 (2012) 4402–4410.
  23. K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, T. Xiao, Removal of fluoride from industrial wastewater by using different adsorbents, Sci. Total Environ., 773 (2021) 145535, doi: 10.1016/j.scitotenv.2021.145535.
  24. M.A. Menkouchi Sahli, S. Annouar, M. Tahaikt, M. Mountadar, A. Soufiane, A. Elmidaoui, Fluoride removal for underground brackish water by adsorption on the natural chitosan and by electrodialysis, Desalination, 212 (2007) 37–45.
  25. Y. Huang, X. Wang, Y. Xu, S. Feng, J. Liu, H. Wang, Aminofunctionalized porous PDVB with high adsorption and regeneration performance for fluoride removal from water, Green Chem. Eng., 2 (2021) 224–232.
  26. M. Tahaikt, F. Elazhar, I. Mohamed, H. Zeggar, M. Taky, A. Elmidaoui, Comparison of the performance of three nanofiltration membranes for the reduction of fluoride ions: application of the Spiegler–Kedem and steric hindrance pore models, Desal. Water Treat., 240 (2021) 14–23.
  27. S.V. Jadhav, K.V. Marathe, V.K. Rathod, A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: competing ion interaction and modelling approach, J. Water Process Eng., 13 (2016) 153–167.
  28. W. Richard Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef, Predicting salt rejections at nanofiltration membranes using artificial neural networks, Desalination, 129 (2000) 147–162.
  29. A. Srivastava, K. Aghilesh, A. Nair, S. Ram, S. Agarwal, J. Ali, R. Singh, M.C. Garg, Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) and reverse osmosis (RO) membrane system for the treatment of brackish ground water, J. Environ. Manage., 278 (2021) 111497, doi: 10.1016/j.jenvman.2020.111497.
  30. M.R.S. Emami, M.K. Amiri, S.P.G. Zaferani, Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM, Korean J. Chem. Eng., 38 (2021) 316–325.
  31. M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor, F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi, A. Elmidaoui, Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations, Desalination, 225 (2008) 209–219.
  32. M.A. Menkouchi Sahli, S. Annouarb, M. Tahaikt, M. Mountadar, A. Soufiane, A. Elmidaoui, Fluoride removal for underground brackish water by adsorption on the natural chitosan and by electrodialysis, Desalination, 212 (2007) 37–45.
  33. N.B. Shaik, S.R. Pedapati, S.A.A. Taqvi, A.R. Othman, F.A.A. Dzubir, A feed-forward back propagation neural network approach to predict the life condition of crude oil pipeline, Processes, 8 (2020) 661, doi: 10.3390/pr8060661.
  34. M. Taky, F.Z. Addar, S. Qaid, H. Zeggar, H. El Hajji, Ultrafiltration of Moroccan Valencia orange juice: juice quality, optimization by custom designs and membrane fouling, Sustainability Agric. Food Environ. Res., 11 (2023) 0719–3726.
  35. R.G. Pontius Jr., O. Thontteh, H. Chen, Components of information for multiple resolution comparison between maps that share a real variable, Environ. Ecol. Stat., 15 (2008) 111–142.
  36. D. Bingöl, M. Hercan, S. Elevli, E. Kılıç, Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin, Bioresour. Technol., 112 (2012) 111–115.
  37. M. Mourabet, A. El Rhilassi, M. Bennani-Ziatni, A. Taitai, Comparative study of artificial neural network and response surface methodology for modelling and optimization the adsorption capacity of fluoride onto apatitic tricalcium phosphate, Univ. J. Appl. Math., 2 (2014) 84–91.