References
- A. Quarteroni, Mathematical models in science and engineering,
Not. AMS, 56 (2009) 10–19.
- D. Hocking, J.M. Nougués, J.C. Rodríguez, S. Sama, Chapter
3.3 – Simulation, Design and Analysis, B. Braunschweig,
R. Gani, Eds., Computer Aided Chemical Engineering, P.O. Box:
211.1000 AE, Amsterdam, The Netherlands, 2002, pp. 165–191.
- S. Pierucci, G. Buzzi Ferraris, 20th European Symposium of
Computer Aided Process Engineering, Radarweg 29, P.O. BOX:
211, 1000AE, Amsterdam, The Netherlands, Linacre House,
Jordan Hill, Oxford OX28DP, UK, 2010, pp. 1–1342.
- A. Fetimi, A. Dâas, Y. Benguerba, S. Merouani, M. Hamachi,
O. Kebiche-Senhadji, O. Hamdaoui, Optimization and
prediction of safranin-O cationic dye removal from aqueous
solution by emulsion liquid membrane (ELM) using artificial
neural network-particle swarm optimization (ANN-PSO) hybrid
model and response surface methodology (RSM), J. Environ.
Chem. Eng., 9 (2021) 105837, doi: 10.1016/j.jece.2021.105837.
- F.Z. Addar, S. El-Ghzizel, M. Tahaikt, M. Belfaquir,
M. Taky, A. Elmidaoui, Fluoride removal by nanofiltration:
experimentation, modelling and prediction based on the
surface response method, Desal. Water Treat., 240 (2021) 75–88.
- G.M. Henkin, A.A. Shananin, Asymptotic behavior of
solutions of the Cauchy problem for Burgers type equations,
J. Math. Pures Appl., 83 (2004) 1457–1500.
- O. Martin, L’Enquête et ses méthodes: l’analyse de données
quantitatives, Paris, Armand Colin, 2005; 2009.
- R.J. Fox, D. Elgart, S. Christopher Davis, Bayesian credible
intervals for response surface optima, J. Stat. Plann. Inference,
139 (2009) 2498–2501.
- S. Ahmadi, M. Mesbah, C.A. Igwegbe, C.D. Ezeliora, C. Osagie,
N.A. Khan, G.L. Dotto, M. Salari, M.H. Dehghani, Sono electrochemical
synthesis of LaFeO3 nanoparticles for the removal of
fluoride: optimization and modeling using RSM, ANN and GA
tools, J. Environ. Chem. Eng., 9 (2021) 105320,
doi: 10.1016/j.jece.2021.105320.
- S. Chellapan, D. Datta, S. Kumar, H. Uslu, Statistical modeling
and optimization of itaconic acid reactive extraction using
response surface methodology (RSM) and artificial neural
network (ANN), Chem. Data Collect., 37 (2022) 100806,
doi: 10.1016/j.cdc.2021.100806.
- J. Prakash Maran, B. Priya, Comparison of response surface
methodology and artificial neural network approach towards
efficient ultrasound-assisted biodiesel production from
muskmelon oil, Ultrason. Sonochem., 23 (2015) 192–200.
- I. Salehi, M. Shirani, A. Semnani, M. Hassani, S. Habibollahi,
Comparative study between response surface methodology
and artificial neural network for adsorption of crystal violet
on magnetic activated carbon, Arabian J. Sci. Eng., 41 (2016)
2611–2621.
- P. Naderi, M. Shirani, A. Semnani, A. Goli, Efficient removal of
crystal violet from aqueous solutions with centaurea stem as a
novel biodegradable bioadsorbent using response surface methodology
and simulated annealing: kinetic, isotherm and thermodynamic
studies, Ecotoxicol. Environ. Saf., 163 (2018) 372–381.
- A. Ghazali, M. Shirani, A. Semnani, V. Zare-Shahabadi,
M. Nekoeinia, Optimization of crystal violet adsorption
onto date palm leaves as a potent biosorbent from aqueous
solutions using response surface methodology and ant colony,
J. Environ. Chem. Eng., 6 (2018) 3942–3950.
- E. Alian, A. Semnani, A. Firooz, M. Shirani, B. Azmoon,
Application of response surface methodology and genetic algorithm
for optimization and determination of iron in food samples
by dispersive liquid–liquid microextraction coupled UV–visible spectrophotometry, Arabian J. Sci. Eng., 43 (2018) 229–240.
- M. Zait, F.Z. Addar, N. Elfilali, M. Tahaikt, A. Elmidaoui,
M. Taky, Analysis and optimization of operating conditions
on ultrafiltration of landfill leachate using a response surface
methodological approach, Desal. Water Treat., 257 (2022) 64–75.
- M. Shirani, A. Semnani, S. Habibollahi, H. Haddadi,
M. Narimani, Synthesis and application of magnetic NaY
zeolite composite immobilized with ionic liquid for adsorption
desulfurization of fuel using response surface methodology,
J. Porous Mater., 23 (2016) 701–712.
- F.Z. Addar, B. Fahid, M. Belfaquir, M. Tahaikt, A. Elmidaoui,
M. Taky, Modeling of fluoride removal by nanofiltration:
coupled film theory model with Nernst–Planck equation and
artificial neural network, Desal. Water Treat., 257 (2022) 76–90.
- M. Shirani, A. Akbari, A. Goli, Application of a novel highperformance
nano biosorbent for removal of anionic dyes
from aqueous solutions using shuffled frog leaping algorithm:
isotherm, kinetic and thermodynamic studies, Desal. Water
Treat., 203 (2020) 388–402.
- E. Kazemi, Y. Yamini, S. Seidi, A. Mohammadi, Determination
of myclobutanil in food samples using homogeneous liquid–liquid microextraction via flotation assistance and gas
chromatography-mass spectrometry using artificial neural
network, Int. J. Environ. Anal. Chem., 98 (2018) 271–285.
- M. Shirani, A. Akbari, M. Hassani, A. Goli, S. Habibollahi,
P. Akbarian, Homogeneous liquid–liquid microextraction via
flotation assistance coupled with gas chromatography-mass
spectrometry for determination of myclobutanil in cucumber,
tomato, grape, and strawberry using genetic algorithm,
Int. J. Environ. Anal. Chem., 98 (2018) 271–285.
- M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni,
R. El Hamri, A. Taitai, Removal of fluoride from aqueous
solution by adsorption on apatitic tricalcium phosphate using
Box–Behnken design and desirability function, Appl. Surf. Sci.,
258 (2012) 4402–4410.
- K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang,
T. Xiao, Removal of fluoride from industrial wastewater by
using different adsorbents, Sci. Total Environ., 773 (2021)
145535, doi: 10.1016/j.scitotenv.2021.145535.
- M.A. Menkouchi Sahli, S. Annouar, M. Tahaikt, M. Mountadar,
A. Soufiane, A. Elmidaoui, Fluoride removal for underground
brackish water by adsorption on the natural chitosan and by
electrodialysis, Desalination, 212 (2007) 37–45.
- Y. Huang, X. Wang, Y. Xu, S. Feng, J. Liu, H. Wang, Aminofunctionalized
porous PDVB with high adsorption and
regeneration performance for fluoride removal from water,
Green Chem. Eng., 2 (2021) 224–232.
- M. Tahaikt, F. Elazhar, I. Mohamed, H. Zeggar, M. Taky,
A. Elmidaoui, Comparison of the performance of three
nanofiltration membranes for the reduction of fluoride ions:
application of the Spiegler–Kedem and steric hindrance pore
models, Desal. Water Treat., 240 (2021) 14–23.
- S.V. Jadhav, K.V. Marathe, V.K. Rathod, A pilot scale concurrent
removal of fluoride, arsenic, sulfate and nitrate by using
nanofiltration: competing ion interaction and modelling
approach, J. Water Process Eng., 13 (2016) 153–167.
- W. Richard Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef,
Predicting salt rejections at nanofiltration membranes using
artificial neural networks, Desalination, 129 (2000) 147–162.
- A. Srivastava, K. Aghilesh, A. Nair, S. Ram, S. Agarwal,
J. Ali, R. Singh, M.C. Garg, Response surface methodology
and artificial neural network modelling for the performance
evaluation of pilot-scale hybrid nanofiltration (NF) and reverse
osmosis (RO) membrane system for the treatment of brackish
ground water, J. Environ. Manage., 278 (2021) 111497,
doi: 10.1016/j.jenvman.2020.111497.
- M.R.S. Emami, M.K. Amiri, S.P.G. Zaferani, Removal
efficiency optimization of Pb2+ in a nanofiltration process by
MLP-ANN and RSM, Korean J. Chem. Eng., 38 (2021) 316–325.
- M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor,
F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi,
A. Elmidaoui, Comparison of the performances of three commercial
membranes in fluoride removal by nanofiltration.
Continuous operations, Desalination, 225 (2008) 209–219.
- M.A. Menkouchi Sahli, S. Annouarb, M. Tahaikt, M. Mountadar,
A. Soufiane, A. Elmidaoui, Fluoride removal for underground
brackish water by adsorption on the natural chitosan
and by electrodialysis, Desalination, 212 (2007) 37–45.
- N.B. Shaik, S.R. Pedapati, S.A.A. Taqvi, A.R. Othman,
F.A.A. Dzubir, A feed-forward back propagation neural
network approach to predict the life condition of crude oil
pipeline, Processes, 8 (2020) 661, doi: 10.3390/pr8060661.
- M. Taky, F.Z. Addar, S. Qaid, H. Zeggar, H. El Hajji, Ultrafiltration
of Moroccan Valencia orange juice: juice quality, optimization
by custom designs and membrane fouling, Sustainability
Agric. Food Environ. Res., 11 (2023) 0719–3726.
- R.G. Pontius Jr., O. Thontteh, H. Chen, Components of
information for multiple resolution comparison between maps
that share a real variable, Environ. Ecol. Stat., 15 (2008) 111–142.
- D. Bingöl, M. Hercan, S. Elevli, E. Kılıç, Comparison of the
results of response surface methodology and artificial neural
network for the biosorption of lead using black cumin,
Bioresour. Technol., 112 (2012) 111–115.
- M. Mourabet, A. El Rhilassi, M. Bennani-Ziatni, A. Taitai,
Comparative study of artificial neural network and response
surface methodology for modelling and optimization the
adsorption capacity of fluoride onto apatitic tricalcium
phosphate, Univ. J. Appl. Math., 2 (2014) 84–91.