References

  1. Q. Chen, M. Tian, R.M. Kasomo, H. Li, H. Zheng, S. Song, H. Luo, D. He, Depression effect of Al(III) and Fe(III) on rutile flotation using dodecylamine polyxyethylene ether as collector, Colloids Surf., A, 603 (2020) 125269, doi: 10.1016/j.colsurfa.2020.125269.
  2. Q. Chen, M. Tian, H. Zheng, H. Luo, H. Li, S. Song, D. He, X. Jiang, Flotation of rutile from almandine using sodium fluorosilicate as the depressant, Colloids Surf., A, 599 (2020) 124918, doi: 10.1016/j.colsurfa.2020.124918.
  3. R.M. Kasomo, H. Li, H. Zheng, Q. Chen, X. Weng, A.D. Mwangi, E. Kiamba, S. Song, Depression of the selective separation of rutile from almandine by sodium hexametaphosphate, Colloids Surf., A, 593 (2020) 124631, doi: 10.1016/j.colsurfa.2020. 124631.
  4. H. Li, Y. Chen, H. Zheng, P. Huang, P. Yang, Q. Chen, X. Weng, D. He, S. Song, Effect of geological origin of apatite on reverse flotation separation of phosphate ores using phosphoric acid as depressant, Miner. Eng., 172 (2021) 107182, doi: 10.1016/j.mineng.2021.107182.
  5. J. Huang, Q. Chen, Y. Mao, H. Li, The effect of ethylene oxide groups in dodecylamine polyoxyethylene ether on rutile flotation, Physicochem. Probl. Miner. Process., 57 (2020) 127–135.
  6. Q. Chen, Z. Chen, R.M. Kasomo, Surface oxidation promotes the flotation of ilmenite: a critical review, Miner. Miner. Mater., 2 (2023) 4, doi: 10.20517/mmm.2022.09.
  7. Q. Chen, R.M. Kasomo, H. Li, X. Jiao, H. Zheng, X. Weng, N.M. Mutua, S. Song, D. He, H. Luo, Froth flotation of rutile – an overview, Miner. Eng., 163 (2021) 106797, doi: 10.1016/j. mineng.2021.106797.
  8. H. Li, Y. Mao, H. Zheng, R.M. Kasomo, P. Huang, Y. Chen, Q. Chen, D. He, S. Song, Impact of geological origin on flotation separation of apatite from dolomite using β-naphthyl sulfonate formaldehyde condensate as depressant, Miner. Eng., 176 (2022) 107323, doi: 10.1016/j.mineng.2021.107323.
  9. N.D. Denkov, Mechanisms of foam destruction by oil-based antifoams, Langmuir, 20 (2004) 9463–9505.
  10. K. Ikehata, M.G. El-Din, Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review, Ozone Sci. Eng., 26 (2004) 327–343.
  11. A. Arslan, E. Topkaya, D. Bingöl, S. Veli, Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach, Sustainable Environ. Res., 28 (2018) 65–71.
  12. P.R. Garrett, The Mode of Action of Antifoams, R.J. Pugh Ed., Defoaming, Cambridge University Press, United Kingdom, 2017, pp. 1–118.
  13. R.D. Kulkarni, E.D. Goddard, P. Chandar, Science and Technology of Silicone Antifoams, R.D. Kulkarni, E.D. Goddard, P. Chandar, Eds., Foams, Routledge, United Kingdom, 2017, pp. 555–585.
  14. K.G. Marinova, N.D. Denkov, P. Branlard, Y. Giraud, M. Deruelle, Optimal hydrophobicity of silica in mixed oil-silica antifoams, Langmuir, 18 (2002) 3399–3403.
  15. J. Rocker, A. Mahmoudkhani, L. Bava, R. Wilson, Low Environmental Impact Non-Silicone Defoamers for Use in Oil/Gas Separators, SPE Eastern Regional Meeting, Columbus, Ohio, USA, August 2011.
  16. A. Hassan, K. Jumbri, A. Ramli, N. Borhan, Physio-chemical analysis of amide and amine poly(dimethylsiloxane)-modified defoamer for efficient oil–water separation, ACS Omega, 6 (2021) 14806–14818.
  17. J.A. Zazo, J.A. Casas, C.B. Molina, A. Quintanilla, J.J. Rodriguez, Evolution of ecotoxicity upon Fenton’s oxidation of phenol in water, Environ. Sci. Technol., 41 (2007) 7164–7170.
  18. T. Shen, M. Yan, Y. Xia, R. Hu, Y. Yang, C. Chen, F. Chen, D. Hantoko, Treatment of wastewater from food waste hydrothermal carbonization via Fenton oxidization combined activated carbon adsorption, Waste Dispos. Sustain. Energy, 4 (2022) 205–218.
  19. F.R. Kameel, F. Riboni, M.R. Hoffmann, S. Enami, A.J. Colussi, Fenton oxidation of gaseous isoprene on aqueous surfaces, J. Phys. Chem. C, 118 (2014) 29151–29158.
  20. N. Barbian, K. Hadler, E. Ventura-Medina, J.J. Cilliers, The froth stability column: linking froth stability and flotation performance, Miner. Eng., 18 (2005) 317–324.
  21. C. Wang, G. Yu, J. Wang, Fenton oxidative degradation of spent organic solvents from nuclear fuel reprocessing plant, Prog. Nucl. Energy, 130 (2020) 103563, doi: 10.1016/j.pnucene.2020.103563.
  22. Y. Liu, J. Zhang, C. Sheng, Y. Zhang, L. Zhao, Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process, Chem. Eng. J., 162 (2010) 1006–1011.
  23. M. Muruganandham, M. Swaminathan, Photochemical oxidation of reactive azo dye with UV–H2O2 process, Dyes Pigm., 62 (2004) 269–275.
  24. N. Modirshahla, M.A. Behnajady, Photooxidative degradation of malachite green (MG) by UV/H2O2: influence of operational parameters and kinetic modeling, Dyes Pigm., 70 (2006) 54–59.
  25. S. Yang, Y. Xiong, Y. Ge, S. Zhang, Heterogeneous Fenton oxidation of nitric oxide by magnetite: kinetics and mechanism, Mater. Lett., 218 (2018) 257–261.
  26. A.-R.A. Giwa, I.A. Bello, A.B. Olabintan, O.S. Bello, T.A. Saleh, Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue, Heliyon, 6 (2020) e04454, doi: 10.1016/j.heliyon.2020.e04454.
  27. F.J. Rivas, J. Frades, M.A. Alonso, C. Montoya, J.M. Monteagudo, Fenton’s oxidation of food processing wastewater components. Kinetic modeling of protocatechuic acid degradation, J. Agric. Food Chem., 53 (2005) 10097–10104.