References
- D. Belkheiri, F. Fourcade, F. Geneste, D. Floner, H. Aït-Amar, A. Amrane, Combined process for removal of
tetracycline antibiotic – coupling pre-treatment with a nickelmodified
graphite felt electrode and a biological treatment,
Int. Biodeterior. Biodegrad., 103 (2015) 147–153.
- L.B. Zhang, S.Y. Shen, Adsorption and catalytic degradation
of sulfamethazine by mesoporous carbon loaded nano zero
valent iron, J. Ind. Eng. Chem., 83 (2020) 123–135.
- L. Tang, Y.N. Liu, J.J. Wang, G.M. Zeng, Y.C. Deng, H.R. Dong,
H.P. Feng, J.J. Wang, B. Peng, Enhanced activation process
of persulfate by mesoporous carbon for degradation of
aqueous organic pollutants: electron transfer mechanism,
Appl. Catal., B, 231 (2018) 1–10.
- J.L. Wang, R. Zhuan, Degradation of antibiotics by advanced
oxidation processes: an overview, Sci. Total Environ.,
701 (2020) 135023, doi: 10.1016/j.scitotenv.2019.135023.
- R. Anjali, S. Shanthakumar, Insights on the current status
of occurrence and removal of antibiotics in wastewater by
advanced oxidation processes, J. Environ. Manage., 246 (2019)
51–62.
- T. Zhang, Y. Chen, Y. Wang, J. Le Roux, Y. Yang, J. Croué,
Efficient peroxydisulfate activation process not relying on
sulfate radical generation for water pollutant degradation,
Environ. Sci. Technol., 48 (2014) 5868–5875.
- X.G. Duan, Z.M. Ao, H.Y. Zhang, M. Saunders, H.Q. Sun,
Z.P. Shao, S.B. Wang, Nanodiamonds in sp2/sp3 configuration
for radical to non-radical oxidation: core-shell layer
dependence, Appl. Catal., B, 222 (2018) 176–181.
- M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic
activation of peroxymonosulfate by TiO2 anchored on cupper
ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process
feasibility, mechanism and pathway, J. Hazard. Mater.,
359 (2018) 325–337.
- A. Ghauch, A.M. Tuqan, N. Kibbi, Ibuprofen removal by
heated persulfate in aqueous solution: a kinetics study,
Chem. Eng. J., 197 (2012) 483–492.
- C.S. Zhou, J.W. Wu, L.L. Dong, B.F. Liu, D.F. Xing, S.S. Yang,
X.K. Wu, Q. Wang, J.N. Fan, L.P. Feng, G.L. Cao, Removal of
antibiotic resistant bacteria and antibiotic resistance genes in
wastewater effluent by UV-activated persulfate, J. Hazard.
Mater., 388 (2020) 122070, doi: 10.1016/j.jhazmat.2020.122070.
- Y. Liu, Y. Zhang, A. Zhou, M. Li, Insights into carbon isotope
fractionation on trichloroethene degradation in base activated
persulfate process: the role of multiple reactive oxygen
species, Sci. Total Environ., 800 (2021) 149371, doi: 10.1016/j.scitotenv.2021.149371.
- S.L. Wang, N. Zhou, Removal of carbamazepine from
aqueous solution using sono-activated persulfate process,
Ultrason. Sonochem., 29 (2016) 156–162.
- X.Y. Xu, J.Y. Qin, Y. Wei, S.C. Ye, J. Shen, Y. Yao, B. Ding,
Y.R. Shu, G.Y. He, H.Q. Chen, Heterogeneous activation of
persulfate by NiFe2–xCoxO4-RGO for oxidative degradation of
bisphenol a in water, Chem. Eng. J., 365 (2019) 259–269.
- B. Kakavandi, S. Alavi, F. Ghanbari, M. Ahmadi, Bisphenol a
degradation by peroxymonosulfate photo-activation coupled
with carbon-based cobalt ferrite nanocomposite: performance,
upgrading synergy and mechanistic pathway, Chemosphere,
287 (2022) 132024, doi: 10.1016/j.chemosphere.2021.132024.
- Z. Liu, H. Ding, C. Zhao, T. Wang, P. Wang, D.D. Dionysiou,
Electrochemical activation of peroxymonosulfate with
ACF cathode: kinetics, influencing factors, mechanism, and
application potential, Water Res., 159 (2019) 111–121.
- X. Sun, Z. Liu, Z. Sun, Electro-enhanced degradation of atrazine
via Co-Fe oxide modified graphite felt composite cathode
for persulfate activation, Chem. Eng. J., 433 (2022) 133789,
doi: 10.1016/j.cej.2021.133789.
- X.G. Duan, H.Q. Sun, Z.P. Shao, S.B. Wang, Non-radical
reactions in environmental remediation processes: uncertainty
and challenges, Appl. Catal., B, 224 (2018) 973–982.
- Y.K. Fu, L. Qin, D.L. Huang, G.M. Zeng, C. Lai, B.S. Li,
J.F. He, H. Yi, M.M. Zhang, M. Cheng, X.F. Wen, Chitosan
functionalized activated coke for Au nanoparticles anchoring:
green synthesis and catalytic activities in hydrogenation of
nitrophenols and azo dyes, Appl. Catal., B, 255 (2019) 117740,
doi: 10.1016/j.apcatb.2019.05.042.
- H.Q. Sun, S.Z. Liu, G.L. Zhou, H.M. Ang, M.O. Tadé, S.B. Wang,
Reduced graphene oxide for catalytic oxidation of aqueous
organic pollutants, ACS Appl. Mater. Interfaces, 4 (2012)
5466–5471.
- H.Z. Wang, W.Q. Guo, B.H. Liu, Q.L. Wu, H.C. Luo, Q. Zhao,
Q.S. Si, F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar
for efficient peroxydisulfate activation: an electron transfer
mechanism, Water Res., 160 (2019) 405–414.
- X.G. Duan, Z.M. Ao, L. Zhou, H.Q. Sun, G.X. Wang,
S.B. Wang, Occurrence of radical and non-radical pathways
from carbocatalysts for aqueous and nonaqueous catalytic
oxidation, Appl. Catal., B, 188 (2016) 98–105.
- M.M. Mian, G.J. Liu, B. Fu, Conversion of sewage sludge
into environmental catalyst and microbial fuel cell
electrode material: a review, Sci. Total Environ., 666 (2019)
525–539.
- W. Oh, T. Lim, Design and application of heterogeneous
catalysts as peroxydisulfate activator for organics removal: an
overview, Chem. Eng. J., 358 (2019) 110–133.
- N. Kojima, A. Mitomo, Y. Itaya, S. Mori, S. Yoshida, Adsorption
removal of pollutants by active cokes produced from sludge
in the energy recycle process of wastes, Waste Manage.,
22 (2002) 399–404.
- A. Wießner, M. Remmler, P. Kuschk, U. Stottmeister, The
treatment of a deposited lignite pyrolysis wastewater by
adsorption using activated carbon and activated coke,
Colloids Surf., A, 139 (1998) 91–97.
- M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent
for contaminant management in soil and water, a review,
Chemosphere, 99 (2014) 19–33.
- F.Y. Li, F.L. Duan, W.C. Ji, X.Y. Gui, Biochar-activated persulfate
for organic contaminants removal: efficiency, mechanisms and
influencing factors, Ecotoxicol. Environ. Saf., 198 (2020) 110653,
doi: 10.1016/j.ecoenv.2020.110653.
- P.P. Zhang, Y.Y. Yang, X.G. Duan, Y.J. Liu, S.B. Wang, Density
functional theory calculations for insight into the heterocatalyst
reactivity and mechanism in persulfate-based advanced
oxidation reactions, ACS Catal., 11 (2021) 11129–11159.
- W.S. Chen, Y.P. Guo, X. Mi, Y. Yu, G.T. Li, Enhanced adsorptive
removal of methylene blue by low-temperature biochar
derived from municipal activated sludge, Desal. Water Treat.,
188 (2020) 257–265.
- M. Abdulkarim, F.A. Al-Rub, Adsorption of lead ions from
aqueous solution onto activated carbon and chemicallymodified
activated carbon prepared from date pits,
Adsorpt. Sci. Technol., 22 (2004) 119–134.
- V. Strelko, D.J. Malik, M. Streat, Characterisation of the surface
of oxidised carbon adsorbents, Carbon, 40 (2002) 95–104.
- G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan,
P.K. Wong, Degradation of Acid Orange 7 using magnetic
AgBr under visible light: the roles of oxidizing species,
Chemosphere, 76 (2009) 1185–1191.
- X. Cheng, H.G. Guo, Y.L. Zhang, X. Wu, Y. Liu, Nonphotochemical
production of singlet oxygen via activation of
persulfate by carbon nanotubes, Water Res., 113 (2017) 80–88.
- B.C. Huang, J. Jiang, G.X. Huang, H.Q. Yu, Sludge biochar-based
catalysts for improved pollutant degradation by activating
peroxymonosulfate, J. Mater. Chem. A, 6 (2018) 8978–8985.
- M. Periasamy, M. Thirumalaikumar, Methods of enhancement
of reactivity and selectivity of sodium borohydride for
applications in organic synthesis, J. Organomet. Chem.,
609 (2000) 137–151.
- S.S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X.D. Li, Removal
of methylene blue from aqueous solution by sewage
sludge-derived biochar: adsorption kinetics, equilibrium,
thermodynamics and mechanism, J. Environ. Chem. Eng.,
5 (2017) 601–611.
- H.R. Yuan, T. Lu, H.Y. Huang, D.D. Zhao, N. Kobayashi,
Y. Chen, Influence of pyrolysis temperature on physical and
chemical properties of biochar made from sewage sludge,
J. Anal. Appl. Pyrolysis, 112 (2015) 284–289.
- X.D. Cao, W. Harris, Properties of dairy-manure-derived
biochar pertinent to its potential use in remediation,
Bioresour. Technol., 101 (2010) 5222–5228.
- E.B. Yang, C.L. Yao, Y.H. Liu, C. Zhang, L.T. Jia, D.B. Li,
Z.H. Fu, D.K. Sun, S. Robert Kirk, D.L. Yin, Bambooderived
porous biochar for efficient adsorption removal of
dibenzothiophene from model fuel, Fuel, 211 (2018) 121–129.
- Z. Li, Y.Q. Sun, Y. Yang, Y.T. Han, T.S. Wang, J.W. Chen,
D.C.W. Tsang, Biochar-supported nanoscale zero-valent
iron as an efficient catalyst for organic degradation
in groundwater, J. Hazard. Mater., 383 (2020) 121240,
doi: 10.1016/j.jhazmat.2019.121240.
- S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J. Ehrhardt,
S. Gaspard, Adsorption studies of methylene blue and phenol
onto vetiver roots activated carbon prepared by chemical
activation, J. Hazard. Mater., 165 (2009) 1029–1039.
- M. Pumera, B. Šmíd, K. Veltruská, Influence of nitric acid
treatment of carbon nanotubes on their physico-chemical
properties, J. Nanosci. Nanotechnol., 9 (2009) 2671–2676.
- H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer,
A.H. Windle, R.H. Friend, Work functions and surface
functional groups of multiwall carbon nanotubes, J. Phys.
Chem. B, 103 (1999) 8116–8121.
- Y.L. Zhao, H. Wang, Structure–function correlations of
carbonaceous materials for persulfate-based advanced
oxidation, Langmuir, 37 (2021) 13969–13975.
- X.G. Duan, H.Q. Sun, S.B. Wang, Metal-free carbocatalysis
in advanced oxidation reactions, Acc. Chem. Res., 51 (2018)
678–687.
- A. Georgi, F. Kopinke, Interaction of adsorption and catalytic
reactions in water decontamination processes, Appl. Catal., B,
158 (2005) 9–18.
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of
inorganic radicals in aqueous solution, J. Phys. Chem. Ref.
Data, 17 (1988) 1027–1284.
- I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-
Utrilla, Role of activated carbon surface chemistry in its
photocatalytic activity and the generation of oxidant radicals
under UV or solar radiation, Appl. Catal., B, 207 (2017) 412–423.
- S.Y. Yang, X. Yang, X.T. Shao, R. Niu, L.L. Wang, Activated
carbon catalyzed persulfate oxidation of Azo dye acid orange
7 at ambient temperature, J. Hazard. Mater., 186 (2011)
659–666.
- R.L. Yin, W.Q. Guo, H.Z. Wang, J.S. Du, X.J. Zhou, Q.L. Wu,
H.S. Zheng, J.S. Chang, N.Q. Ren, Selective degradation of
sulfonamide antibiotics by peroxymonosulfate alone: direct
oxidation and non-radical mechanisms, Chem. Eng. J.,
334 (2018) 2539–2546.
- L.R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla, Carbon
materials as adsorbents in aqueous solutions, Chem. Phys.
Carbon, 27 (2001) 227–405.
- X. Cheng, H.G. Guo, Y.L. Zhang, X. Wu, Y. Liu, Nonphotochemical
production of singlet oxygen via activation of
persulfate by carbon nanotubes, Water Res., 11 (2017) 80–88.
- Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.Y. Pang, J. Li, X.T. Lu,
L.P. Yuan, Activation of peroxymonosulfate by benzoquinone:
a novel non-radical oxidation process, Environ. Sci. Technol.,
49 (2015) 12941–12950.
- X.R. Zhou, Z.T. Zeng, G.M. Zeng, C. Lai, R. Xiao, S.Y. Liu,
D.L. Huang, L. Qin, X.G. Liu, B.S. Li, H. Yi, Y.K. Fu, L. Li,
M.M. Zhang, Z.H. Wang, Insight into the mechanism of
persulfate activated by bone char: unraveling the role of
functional structure of biochar, Chem. Eng. J., 401 (2020)
126–127.
- X. Cheng, H.G. Guo, Y.L. Zhang, G.V. Korshin, B. Yang, Insights
into the mechanism of non-radical reactions of persulfate
activated by carbon nanotubes: activation performance and
structure-function relationship, Water Res., 157 (2019) 406–414.
- G. Song, F.Z. Qin, J.F. Yu, L. Tang, Y. Pang, C. Zhang, J.J. Wang,
L.F. Deng, Tailoring biochar for persulfate-based environmental
catalysis: impact of biomass feedstocks, J. Hazard. Mater.,
424 (2022) 127663, doi: 10.1016/j.jhazmat.2021.127663.
- D. Ouyang, Y. Chen, J.C. Yan, L.B. Qian, L. Han, M.F. Chen,
Activation mechanism of peroxymonosulfate by biochar
for catalytic degradation of 1,4-dioxane: important role of
biochar defect structures, Chem. Eng. J., 370 (2019) 614–624.