References

  1. D. Belkheiri, F. Fourcade, F. Geneste, D. Floner, H. Aït-Amar, A. Amrane, Combined process for removal of tetracycline antibiotic – coupling pre-treatment with a nickelmodified graphite felt electrode and a biological treatment, Int. Biodeterior. Biodegrad., 103 (2015) 147–153.
  2. L.B. Zhang, S.Y. Shen, Adsorption and catalytic degradation of sulfamethazine by mesoporous carbon loaded nano zero valent iron, J. Ind. Eng. Chem., 83 (2020) 123–135.
  3. L. Tang, Y.N. Liu, J.J. Wang, G.M. Zeng, Y.C. Deng, H.R. Dong, H.P. Feng, J.J. Wang, B. Peng, Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism, Appl. Catal., B, 231 (2018) 1–10.
  4. J.L. Wang, R. Zhuan, Degradation of antibiotics by advanced oxidation processes: an overview, Sci. Total Environ., 701 (2020) 135023, doi: 10.1016/j.scitotenv.2019.135023.
  5. R. Anjali, S. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes, J. Environ. Manage., 246 (2019) 51–62.
  6. T. Zhang, Y. Chen, Y. Wang, J. Le Roux, Y. Yang, J. Croué, Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation, Environ. Sci. Technol., 48 (2014) 5868–5875.
  7. X.G. Duan, Z.M. Ao, H.Y. Zhang, M. Saunders, H.Q. Sun, Z.P. Shao, S.B. Wang, Nanodiamonds in sp2/sp3 configuration for radical to non-radical oxidation: core-shell layer dependence, Appl. Catal., B, 222 (2018) 176–181.
  8. M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process feasibility, mechanism and pathway, J. Hazard. Mater., 359 (2018) 325–337.
  9. A. Ghauch, A.M. Tuqan, N. Kibbi, Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study, Chem. Eng. J., 197 (2012) 483–492.
  10. C.S. Zhou, J.W. Wu, L.L. Dong, B.F. Liu, D.F. Xing, S.S. Yang, X.K. Wu, Q. Wang, J.N. Fan, L.P. Feng, G.L. Cao, Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate, J. Hazard. Mater., 388 (2020) 122070, doi: 10.1016/j.jhazmat.2020.122070.
  11. Y. Liu, Y. Zhang, A. Zhou, M. Li, Insights into carbon isotope fractionation on trichloroethene degradation in base activated persulfate process: the role of multiple reactive oxygen species, Sci. Total Environ., 800 (2021) 149371, doi: 10.1016/j.scitotenv.2021.149371.
  12. S.L. Wang, N. Zhou, Removal of carbamazepine from aqueous solution using sono-activated persulfate process, Ultrason. Sonochem., 29 (2016) 156–162.
  13. X.Y. Xu, J.Y. Qin, Y. Wei, S.C. Ye, J. Shen, Y. Yao, B. Ding, Y.R. Shu, G.Y. He, H.Q. Chen, Heterogeneous activation of persulfate by NiFe2–xCoxO4-RGO for oxidative degradation of bisphenol a in water, Chem. Eng. J., 365 (2019) 259–269.
  14. B. Kakavandi, S. Alavi, F. Ghanbari, M. Ahmadi, Bisphenol a degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: performance, upgrading synergy and mechanistic pathway, Chemosphere, 287 (2022) 132024, doi: 10.1016/j.chemosphere.2021.132024.
  15. Z. Liu, H. Ding, C. Zhao, T. Wang, P. Wang, D.D. Dionysiou, Electrochemical activation of peroxymonosulfate with ACF cathode: kinetics, influencing factors, mechanism, and application potential, Water Res., 159 (2019) 111–121.
  16. X. Sun, Z. Liu, Z. Sun, Electro-enhanced degradation of atrazine via Co-Fe oxide modified graphite felt composite cathode for persulfate activation, Chem. Eng. J., 433 (2022) 133789, doi: 10.1016/j.cej.2021.133789.
  17. X.G. Duan, H.Q. Sun, Z.P. Shao, S.B. Wang, Non-radical reactions in environmental remediation processes: uncertainty and challenges, Appl. Catal., B, 224 (2018) 973–982.
  18. Y.K. Fu, L. Qin, D.L. Huang, G.M. Zeng, C. Lai, B.S. Li, J.F. He, H. Yi, M.M. Zhang, M. Cheng, X.F. Wen, Chitosan functionalized activated coke for Au nanoparticles anchoring: green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes, Appl. Catal., B, 255 (2019) 117740, doi: 10.1016/j.apcatb.2019.05.042.
  19. H.Q. Sun, S.Z. Liu, G.L. Zhou, H.M. Ang, M.O. Tadé, S.B. Wang, Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, ACS Appl. Mater. Interfaces, 4 (2012) 5466–5471.
  20. H.Z. Wang, W.Q. Guo, B.H. Liu, Q.L. Wu, H.C. Luo, Q. Zhao, Q.S. Si, F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism, Water Res., 160 (2019) 405–414.
  21. X.G. Duan, Z.M. Ao, L. Zhou, H.Q. Sun, G.X. Wang, S.B. Wang, Occurrence of radical and non-radical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation, Appl. Catal., B, 188 (2016) 98–105.
  22. M.M. Mian, G.J. Liu, B. Fu, Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material: a review, Sci. Total Environ., 666 (2019) 525–539.
  23. W. Oh, T. Lim, Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview, Chem. Eng. J., 358 (2019) 110–133.
  24. N. Kojima, A. Mitomo, Y. Itaya, S. Mori, S. Yoshida, Adsorption removal of pollutants by active cokes produced from sludge in the energy recycle process of wastes, Waste Manage., 22 (2002) 399–404.
  25. A. Wießner, M. Remmler, P. Kuschk, U. Stottmeister, The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke, Colloids Surf., A, 139 (1998) 91–97.
  26. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water, a review, Chemosphere, 99 (2014) 19–33.
  27. F.Y. Li, F.L. Duan, W.C. Ji, X.Y. Gui, Biochar-activated persulfate for organic contaminants removal: efficiency, mechanisms and influencing factors, Ecotoxicol. Environ. Saf., 198 (2020) 110653, doi: 10.1016/j.ecoenv.2020.110653.
  28. P.P. Zhang, Y.Y. Yang, X.G. Duan, Y.J. Liu, S.B. Wang, Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions, ACS Catal., 11 (2021) 11129–11159.
  29. W.S. Chen, Y.P. Guo, X. Mi, Y. Yu, G.T. Li, Enhanced adsorptive removal of methylene blue by low-temperature biochar derived from municipal activated sludge, Desal. Water Treat., 188 (2020) 257–265.
  30. M. Abdulkarim, F.A. Al-Rub, Adsorption of lead ions from aqueous solution onto activated carbon and chemicallymodified activated carbon prepared from date pits, Adsorpt. Sci. Technol., 22 (2004) 119–134.
  31. V. Strelko, D.J. Malik, M. Streat, Characterisation of the surface of oxidised carbon adsorbents, Carbon, 40 (2002) 95–104.
  32. G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species, Chemosphere, 76 (2009) 1185–1191.
  33. X. Cheng, H.G. Guo, Y.L. Zhang, X. Wu, Y. Liu, Nonphotochemical production of singlet oxygen via activation of persulfate by carbon nanotubes, Water Res., 113 (2017) 80–88.
  34. B.C. Huang, J. Jiang, G.X. Huang, H.Q. Yu, Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate, J. Mater. Chem. A, 6 (2018) 8978–8985.
  35. M. Periasamy, M. Thirumalaikumar, Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis, J. Organomet. Chem., 609 (2000) 137–151.
  36. S.S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X.D. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  37. H.R. Yuan, T. Lu, H.Y. Huang, D.D. Zhao, N. Kobayashi, Y. Chen, Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge, J. Anal. Appl. Pyrolysis, 112 (2015) 284–289.
  38. X.D. Cao, W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation, Bioresour. Technol., 101 (2010) 5222–5228.
  39. E.B. Yang, C.L. Yao, Y.H. Liu, C. Zhang, L.T. Jia, D.B. Li, Z.H. Fu, D.K. Sun, S. Robert Kirk, D.L. Yin, Bambooderived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel, Fuel, 211 (2018) 121–129.
  40. Z. Li, Y.Q. Sun, Y. Yang, Y.T. Han, T.S. Wang, J.W. Chen, D.C.W. Tsang, Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater, J. Hazard. Mater., 383 (2020) 121240, doi: 10.1016/j.jhazmat.2019.121240.
  41. S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater., 165 (2009) 1029–1039.
  42. M. Pumera, B. Šmíd, K. Veltruská, Influence of nitric acid treatment of carbon nanotubes on their physico-chemical properties, J. Nanosci. Nanotechnol., 9 (2009) 2671–2676.
  43. H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work functions and surface functional groups of multiwall carbon nanotubes, J. Phys. Chem. B, 103 (1999) 8116–8121.
  44. Y.L. Zhao, H. Wang, Structure–function correlations of carbonaceous materials for persulfate-based advanced oxidation, Langmuir, 37 (2021) 13969–13975.
  45. X.G. Duan, H.Q. Sun, S.B. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res., 51 (2018) 678–687.
  46. A. Georgi, F. Kopinke, Interaction of adsorption and catalytic reactions in water decontamination processes, Appl. Catal., B, 158 (2005) 9–18.
  47. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  48. I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera- Utrilla, Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation, Appl. Catal., B, 207 (2017) 412–423.
  49. S.Y. Yang, X. Yang, X.T. Shao, R. Niu, L.L. Wang, Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
  50. R.L. Yin, W.Q. Guo, H.Z. Wang, J.S. Du, X.J. Zhou, Q.L. Wu, H.S. Zheng, J.S. Chang, N.Q. Ren, Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and non-radical mechanisms, Chem. Eng. J., 334 (2018) 2539–2546.
  51. L.R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla, Carbon materials as adsorbents in aqueous solutions, Chem. Phys. Carbon, 27 (2001) 227–405.
  52. X. Cheng, H.G. Guo, Y.L. Zhang, X. Wu, Y. Liu, Nonphotochemical production of singlet oxygen via activation of persulfate by carbon nanotubes, Water Res., 11 (2017) 80–88.
  53. Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.Y. Pang, J. Li, X.T. Lu, L.P. Yuan, Activation of peroxymonosulfate by benzoquinone: a novel non-radical oxidation process, Environ. Sci. Technol., 49 (2015) 12941–12950.
  54. X.R. Zhou, Z.T. Zeng, G.M. Zeng, C. Lai, R. Xiao, S.Y. Liu, D.L. Huang, L. Qin, X.G. Liu, B.S. Li, H. Yi, Y.K. Fu, L. Li, M.M. Zhang, Z.H. Wang, Insight into the mechanism of persulfate activated by bone char: unraveling the role of functional structure of biochar, Chem. Eng. J., 401 (2020) 126–127.
  55. X. Cheng, H.G. Guo, Y.L. Zhang, G.V. Korshin, B. Yang, Insights into the mechanism of non-radical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship, Water Res., 157 (2019) 406–414.
  56. G. Song, F.Z. Qin, J.F. Yu, L. Tang, Y. Pang, C. Zhang, J.J. Wang, L.F. Deng, Tailoring biochar for persulfate-based environmental catalysis: impact of biomass feedstocks, J. Hazard. Mater., 424 (2022) 127663, doi: 10.1016/j.jhazmat.2021.127663.
  57. D. Ouyang, Y. Chen, J.C. Yan, L.B. Qian, L. Han, M.F. Chen, Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures, Chem. Eng. J., 370 (2019) 614–624.