References
- H. Watamura, H. Marukawa, I. Hirasawa. Polyelectrolyte effects
on the crystallization phenomena of the lithium carbonate,
J. Crystal Growth, 373 (2013) 111–117.
- P. Taborga, I. Brito, T.A. Graber, Effect of additives on size
and shape of lithium carbonate crystals, J. Crystal Growth,
460 (2017) 5–12.
- P.S. Song, R.J. Xiang, Utilization and exploitation of lithium
resources in salt lakes and some suggestions concerning
development of Li industries in China, Miner. Deposits,
5 (2014) 977–992.
- P.W. Gruber, P.A. Medina, G.A. Keoleian, S.E. Kesler,
M.P. Everson, T.J. Wallington, Global lithium availability,
J. Ind. Ecol., 15 (2011) 760–775.
- H. Vikström, S. Davidsson, M. Höök, Lithium availability
and future production outlooks, Appl. Energy, 110 (2013)
252–266.
- M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire
dye-sensitized solar cells, Nat. Mater., 4 (2005) 455–459.
- Y. Wang, S.C. Du, X.M. Wang, M.M. Sun, Y.J. Yang,
J.B. Gong, Spherulitic growth and morphology control
of lithium carbonate: the stepwise evolution of core-shell
structures, Powder Technol., 335 (2019) 617–628.
- M.A. Lovette, A.R. Browning, D.W. Griffin, J.P. Sizemore,
R.C. Snyder, M.F. Doherty, Crystal shape engineering, Ind. Eng.
Chem. Res., 47 (2008) 9812–9833.
- H.Y. Wang, B.Q. Du, M. Wang, Study of the solubility,
supersolubility and metastable zone width of Li2CO3 in the
LiCl–NaCl–KCl–Na2SO4 system from 293.15 to 353.15 K,
J. Chem. Eng. Data, 63 (2018) 1429–1434.
- L.B. Huang, J. Zhu, B.X. Wang, L. Jie, J.C. Liu, T. Yang,
Discussion on several processes of preparation of battery
grade lithium carbonate from Tibet Salt Lake lithium
concentrate, Gansu Metall., 36 (2014) 78–80.
- Z.H. Xu, H.J. Zhang, R.Y. Wang, W.J. Gui, G.F. Liu, Y. Yang,
Systemic and direct production of battery-grade lithium
carbonate from a saline lake, Ind. Eng. Chem. Res., 53 (2014)
16502–16507.
- J.W. An, J.K. Dong, K.T. Tran, M.J. Kim, T. Lim, T. Tran,
Recovery of lithium from Uyuni salar brine, Hydrometallurgy,
117–118 (2012) 64–70.
- S.J. Duan, Multi-Scale Regulation of Reactive Crystallization
of Lithium Carbonate, East China University of Science and
Technology, 2018.
- C. Wei, R.S. Chen, Y.R. Yang, M.G. Yi, L. Xiang, Removal of SO42–
from Li2CO3 by recrystallization in Na2CO3 solution, Crystals,
8 (2018) 19, doi: 10.3390/cryst8010019.
- C. Wang, Experimental Study on a Series of Lithium Products
Obtained from Crude Lithium Sulfate Ore in Salt Pan,
University of Chinese Academy of Sciences, 2014.
- H.E. King, H. Satoh, K. Tsukamoto, A. Putnis, Nanoscale
observations of magnesite growth in chloride- and sulfate-rich
solutions, Environ. Sci. Technol., 47 (2013) 8684–8691.
- T.L. Ye, Principle and Application of Chemical of Crystallization
Process, Beijing University of Technology Press, Beijing,
2006, pp. 78–86.
- H.E. King, A. Salisbury, J. Huijsmans, N.Y. Dzade, O. Plümper,
Influence of inorganic solution components on lithium
carbonate crystal growth, Cryst. Growth Des., 19 (2019)
6994–7006.
- X. Li, B. Yuan, M.J. Yi, Study on removal of trace sulfur
impurity in lithium carbonate by hydrothermal method,
Inorg. Salt Ind., 51 (2019) 4.
- G.M. Jiang, H.L. Fu, K. Savino, J.J. Qian, Z.B. Wu, B.H. Guan,
Nonlattice cation-SO42– ion pairs in calcium sulfate hemihydrate
nucleation, Cryst. Growth Des., 13 (2013) 5128–5134.
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the
projector augmented-wave method, Phys. Rev. B: Condens.
Matter, 59 (1999) 1758–1775.
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett., 77 (1996)
3865–3868.
- Y. Idemoto, J.W. Richardson Jr., N. Kour, S. Kohara, C.-K. Loong,
Crystal structure of (LixK1–x)2CO3(x = 0, 0.43, 0.5, 0.62, 1) by
neutron powder diffraction analysis, J. Phys. Chem. Solids,
59 (1998) 363–376.
- Y.H. Chen, C.C. Pan, M.L. Zhang, L.H. Yuan, C.R. Zhang,
A first-principles study of the adsorption of H2 molecules on
the surface of LaFeO3, Chin. J. Inorg. Chem., 32 (2016) 945–953.
- W.C. Chiou Jr., E.A. Carter, Structure and stability of Fe3C-cementite
surfaces from first principles, Surf. Sci., 530 (2003)
88–100.
- Z.Y. Meng, Z.Y. Yang, Z.Q. Yin, Y.Y. Li, X.Q. Ju, Y.Q. Yao, J. Long,
Interaction between dispersant and coal slime added in semicoke
water slurry: an experimental and DFT study, Appl. Surf.
Sci., 540 (2021) 148327, doi: 10.1016/j.apsusc.2020.148327.
- H.W. Gao, S. Pishney, M.J. Janik, First principles study on the
adsorption of CO2 and H2O on the K2CO3 (001) surface, Surf.
Sci., 609 (2013) 140–146.
- Y.J. Ji, L. Bian, N. Liu, Y.W. Liu, Y.J. Du, Electronic structure
of Cs adsorption on Al0.5Ga0.5N(0001) surface, Mater. Sci.
Semicond. Process., 119 (2020) 105213, doi: 10.1016/j.mssp.2020.105213.
- Z.Y. Meng, Z.Y. Yang, X.Q. Ju, X.Y. Song, J. Long, Quantum
chemistry study on the influence of dispersants on the
pulpability of water coke slurry, J. Fuel Chem. Technol.,
47 (2019) 1025–1031.
- L. Gránásy, T. Pusztai, G. Tegze, J.A. Warren, J.F. Douglas,
Growth and form of spherulites, Phys. Rev. E: Stat.
Nonlinear Soft Matter Phys., 72 (2005) 011605, doi: 10.1103/PhysRevE.72.011605.
- Y. Shu, Y. Zhang, J.M. Zhang, First-principles analysis of
Cu surface properties, J. Phys., 61 (2012) 016108.
- Y.M. Zhu, Y.Y. Zhang, N. Nan, R.Q. Xie, J. Liu, First-principles
calculations
of apatite crystals and surface genes, Metal
Mine, 6 (2020) 87–93.
- N. Nan, Y.M. Zhu, Y.X. Han, J. Liu, Molecular modeling
of interactions between N-(carboxymethyl)-N-tetradecylglycine
and fluorapatite, Minerals, 9 (2019) 278, doi: 10.3390/min9050278.
- H.W. Wu, N. Zhang, H.M. Wang, S.G. Hong, Adsorption of CO2
on Cu2O (111) oxygen-vacancy surface: first-principles study,
Chem. Phys. Lett., 568 (2013) 84–89.
- W. Zhao, J.D. Wang, F.B. Liu, D.R. Chen, A first-principles
study of the adsorption of H2O molecules on the surface of
Fe(100), Fe(110), Fe(111), J. Phys., 58 (2009) 3352–3357.
- L. Lin, L.W. Yao, S.F. Li, L.G. Zhu, J.T. Huang, P.T. Wang,
W.Y. Yu, C.Z. He, Z. Zhang, The influence of SiC(111) surface
with different layers on CH4 adsorption, Surf. Sci., 702 (2020)
121699, doi: 10.1016/j.susc.2020.121699.
- X. Mu, X. Sun, H.M. Li, Z.J. Ding, First-principles study of
NO adsorbed Ni(100) surface, J. Nanosci. Nanotechnol.,
10 (2010) 7336–7339.
- Y.H. Chen, T.T. Liu, M.L.Z. Zhang, B.W. Zhang, C.R. Zhang,
M.L. Kang, L. Luo, A first-principles study of the adsorption
of H2 molecules on the surface of Mg3N2, J. Chem., 75 (2017)
708–714.