References

  1. H. Watamura, H. Marukawa, I. Hirasawa. Polyelectrolyte effects on the crystallization phenomena of the lithium carbonate, J. Crystal Growth, 373 (2013) 111–117.
  2. P. Taborga, I. Brito, T.A. Graber, Effect of additives on size and shape of lithium carbonate crystals, J. Crystal Growth, 460 (2017) 5–12.
  3. P.S. Song, R.J. Xiang, Utilization and exploitation of lithium resources in salt lakes and some suggestions concerning development of Li industries in China, Miner. Deposits, 5 (2014) 977–992.
  4. P.W. Gruber, P.A. Medina, G.A. Keoleian, S.E. Kesler, M.P. Everson, T.J. Wallington, Global lithium availability, J. Ind. Ecol., 15 (2011) 760–775.
  5. H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks, Appl. Energy, 110 (2013) 252–266.
  6. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater., 4 (2005) 455–459.
  7. Y. Wang, S.C. Du, X.M. Wang, M.M. Sun, Y.J. Yang, J.B. Gong, Spherulitic growth and morphology control of lithium carbonate: the stepwise evolution of core-shell structures, Powder Technol., 335 (2019) 617–628.
  8. M.A. Lovette, A.R. Browning, D.W. Griffin, J.P. Sizemore, R.C. Snyder, M.F. Doherty, Crystal shape engineering, Ind. Eng. Chem. Res., 47 (2008) 9812–9833.
  9. H.Y. Wang, B.Q. Du, M. Wang, Study of the solubility, supersolubility and metastable zone width of Li2CO3 in the LiCl–NaCl–KCl–Na2SO4 system from 293.15 to 353.15 K, J. Chem. Eng. Data, 63 (2018) 1429–1434.
  10. L.B. Huang, J. Zhu, B.X. Wang, L. Jie, J.C. Liu, T. Yang, Discussion on several processes of preparation of battery grade lithium carbonate from Tibet Salt Lake lithium concentrate, Gansu Metall., 36 (2014) 78–80.
  11. Z.H. Xu, H.J. Zhang, R.Y. Wang, W.J. Gui, G.F. Liu, Y. Yang, Systemic and direct production of battery-grade lithium carbonate from a saline lake, Ind. Eng. Chem. Res., 53 (2014) 16502–16507.
  12. J.W. An, J.K. Dong, K.T. Tran, M.J. Kim, T. Lim, T. Tran, Recovery of lithium from Uyuni salar brine, Hydrometallurgy, 117–118 (2012) 64–70.
  13. S.J. Duan, Multi-Scale Regulation of Reactive Crystallization of Lithium Carbonate, East China University of Science and Technology, 2018.
  14. C. Wei, R.S. Chen, Y.R. Yang, M.G. Yi, L. Xiang, Removal of SO42– from Li2CO3 by recrystallization in Na2CO3 solution, Crystals, 8 (2018) 19, doi: 10.3390/cryst8010019.
  15. C. Wang, Experimental Study on a Series of Lithium Products Obtained from Crude Lithium Sulfate Ore in Salt Pan, University of Chinese Academy of Sciences, 2014.
  16. H.E. King, H. Satoh, K. Tsukamoto, A. Putnis, Nanoscale observations of magnesite growth in chloride- and sulfate-rich solutions, Environ. Sci. Technol., 47 (2013) 8684–8691.
  17. T.L. Ye, Principle and Application of Chemical of Crystallization Process, Beijing University of Technology Press, Beijing, 2006, pp. 78–86.
  18. H.E. King, A. Salisbury, J. Huijsmans, N.Y. Dzade, O. Plümper, Influence of inorganic solution components on lithium carbonate crystal growth, Cryst. Growth Des., 19 (2019) 6994–7006.
  19. X. Li, B. Yuan, M.J. Yi, Study on removal of trace sulfur impurity in lithium carbonate by hydrothermal method, Inorg. Salt Ind., 51 (2019) 4.
  20. G.M. Jiang, H.L. Fu, K. Savino, J.J. Qian, Z.B. Wu, B.H. Guan, Nonlattice cation-SO42– ion pairs in calcium sulfate hemihydrate nucleation, Cryst. Growth Des., 13 (2013) 5128–5134.
  21. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B: Condens. Matter, 59 (1999) 1758–1775.
  22. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865–3868.
  23. Y. Idemoto, J.W. Richardson Jr., N. Kour, S. Kohara, C.-K. Loong, Crystal structure of (LixK1–x)2CO3(x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis, J. Phys. Chem. Solids, 59 (1998) 363–376.
  24. Y.H. Chen, C.C. Pan, M.L. Zhang, L.H. Yuan, C.R. Zhang, A first-principles study of the adsorption of H2 molecules on the surface of LaFeO3, Chin. J. Inorg. Chem., 32 (2016) 945–953.
  25. W.C. Chiou Jr., E.A. Carter, Structure and stability of Fe3C-cementite surfaces from first principles, Surf. Sci., 530 (2003) 88–100.
  26. Z.Y. Meng, Z.Y. Yang, Z.Q. Yin, Y.Y. Li, X.Q. Ju, Y.Q. Yao, J. Long, Interaction between dispersant and coal slime added in semicoke water slurry: an experimental and DFT study, Appl. Surf. Sci., 540 (2021) 148327, doi: 10.1016/j.apsusc.2020.148327.
  27. H.W. Gao, S. Pishney, M.J. Janik, First principles study on the adsorption of CO2 and H2O on the K2CO3 (001) surface, Surf. Sci., 609 (2013) 140–146.
  28. Y.J. Ji, L. Bian, N. Liu, Y.W. Liu, Y.J. Du, Electronic structure of Cs adsorption on Al0.5Ga0.5N(0001) surface, Mater. Sci. Semicond. Process., 119 (2020) 105213, doi: 10.1016/j.mssp.2020.105213.
  29. Z.Y. Meng, Z.Y. Yang, X.Q. Ju, X.Y. Song, J. Long, Quantum chemistry study on the influence of dispersants on the pulpability of water coke slurry, J. Fuel Chem. Technol., 47 (2019) 1025–1031.
  30. L. Gránásy, T. Pusztai, G. Tegze, J.A. Warren, J.F. Douglas, Growth and form of spherulites, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 72 (2005) 011605, doi: 10.1103/PhysRevE.72.011605.
  31. Y. Shu, Y. Zhang, J.M. Zhang, First-principles analysis of Cu surface properties, J. Phys., 61 (2012) 016108.
  32. Y.M. Zhu, Y.Y. Zhang, N. Nan, R.Q. Xie, J. Liu, First-principles calculations of apatite crystals and surface genes, Metal Mine, 6 (2020) 87–93.
  33. N. Nan, Y.M. Zhu, Y.X. Han, J. Liu, Molecular modeling of interactions between N-(carboxymethyl)-N-tetradecylglycine and fluorapatite, Minerals, 9 (2019) 278, doi: 10.3390/min9050278.
  34. H.W. Wu, N. Zhang, H.M. Wang, S.G. Hong, Adsorption of CO2 on Cu2O (111) oxygen-vacancy surface: first-principles study, Chem. Phys. Lett., 568 (2013) 84–89.
  35. W. Zhao, J.D. Wang, F.B. Liu, D.R. Chen, A first-principles study of the adsorption of H2O molecules on the surface of Fe(100), Fe(110), Fe(111), J. Phys., 58 (2009) 3352–3357.
  36. L. Lin, L.W. Yao, S.F. Li, L.G. Zhu, J.T. Huang, P.T. Wang, W.Y. Yu, C.Z. He, Z. Zhang, The influence of SiC(111) surface with different layers on CH4 adsorption, Surf. Sci., 702 (2020) 121699, doi: 10.1016/j.susc.2020.121699.
  37. X. Mu, X. Sun, H.M. Li, Z.J. Ding, First-principles study of NO adsorbed Ni(100) surface, J. Nanosci. Nanotechnol., 10 (2010) 7336–7339.
  38. Y.H. Chen, T.T. Liu, M.L.Z. Zhang, B.W. Zhang, C.R. Zhang, M.L. Kang, L. Luo, A first-principles study of the adsorption of H2 molecules on the surface of Mg3N2, J. Chem., 75 (2017) 708–714.