References

  1. C. Ma, A. Vasileiadis, H.T. Wolterbeek, A.G. Denkova, P. Serra Crespo, Adsorption of molybdenum on Zr-based MOFs for potential application in the 99Mo/99mTc generator, Appl. Surf. Sci., 572 (2022) 151340, doi: 10.1016/j.apsusc.2021.151340.
  2. W.R. Chappell, R.R. Meglen, R. Moure-Eraso, C.C. Solomons, T.A. Tsongas, P.A. Walravens, P.W. Winston, Human Health Effects of Molybdenum in Drinking Water, U.S. EPA Report, 1979.
  3. A.Y. Ahmad, M.A. Al-Ghouti, M. Khraisheh, N. Zouari, Insights into the removal of lithium and molybdenum from groundwater by adsorption onto activated carbon, bentonite, roasted date pits, and modified-roasted date pits, Bioresour. Technol., 18 (2022) 101045, doi: 10.1016/j.biteb.2022.101045.
  4. L.W. Yao, Y.H. Liu, K. Yang, X. Xi, R.Q. Niu, C. Ren, C.S. Wang, Spatial-temporal analysis and background value determination of molybdenum concentration in basins with high molybdenum geochemical background –
    a case study of the Upper Yi River Basin, J. Environ. Manage., 286 (2021) 112199, doi: 10.1016/j.jenvman.2021.112199.
  5. I. Timofeev, N. Kosheleva, N. Kasimov, Contamination of soils by potentially toxic elements in the impact zone of tungstenmolybdenum ore mine in the Baikal region: a survey and risk assessment, Sci. Total Environ., 642 (2018) 63–76.
  6. G. Tepanosyan, L. Sahakyan, C. Zhang, A. Saghatelyan, The application of local Moran’s I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan, Appl. Geochem., 104 (2019) 116–123.
  7. Z. Wang, C. Hong, Y. Xing, K. Wang, Y. Li, L. Feng, S. Ma, Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China, Ecotoxicol. Environ. Saf., 154 (2018) 3296, doi: 10.1016/j.ecoenv.2018.02.048.
  8. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model, Appl. Surf. Sci., 326 (2015) 151‒161.
  9. R. Gamal, S.E. Rizk, N.E. El-Hefny, The adsorptive removal of Mo(VI) from aqueous solution by a synthetic magnetic chromium ferrite nanocomposite using a nonionic surfactant, J. Alloys Compd., 853 (2021) 157039, doi: 10.1016/j.jallcom.2020.157039.
  10. F. Guo, X.L. Xi, L.W. Ma, Z.R. Nie, Property and mechanism on sorption of molybdenum from tungstate solution with a porous amine resin, J. Cleaner Prod., 335 (2022) 130304, doi: 10.1016/j.jclepro.2021.130304.
  11. S.H.R. Rouhani, R. Davarkhah, P. Zaheri, S.M.A. Mousavian, Separation of molybdenum from spent HDS catalysts using emulsion liquid membrane system, Chem. Eng. Process., 153 (2020) 107958, doi: 10.1016/j.cep.2020.107958.
  12. Y.J. Tu, T.S. Chan, H.W. Tu, S.L. Wang, C.F. You, C.K. Chang, Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles, Chemosphere, 148 (2016) 452–458.
  13. Y.C. Chen, C.Y. Lu, Kinetics, thermodynamics and regeneration of molybdenum adsorption in aqueous solutions with NaOCl-oxidized multiwalled carbon nanotubes, J. Ind. Eng. Chem., 20 (2014) 2521–2527.
  14. B. Verbinnen, C. Block, P. Lievens, A. Van Brecht, C. Vandecasteele, Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite, Waste Biomass Valorization, 4 (2013) 635–645.
  15. B.C. Bostick, S. Fendorf, Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2), Environ. Sci. Technol., 37 (2003) 285‒291.
  16. J.J. Lian, H.L. Wang, H.P. He, W.L. Huang, M. Yang, Y. Zhong, P.A. Peng, The reaction of amorphous iron sulfide with Mo(VI) under different pH conditions, Chemosphere, 266 (2021) 128946, doi: 10.1016/j.chemosphere.2020.128946.
  17. M. Xiao, X. Lai, J. He, J. Huang, Z. Tang, R. Wu, J. Jian, Highly efficient removal of aqueous Hg(II) by FeS
    micro-flakes, Sci. Total Environ., 870 (2023) 162013, doi: 10.1016/j.scitotenv.2023.162013.
  18. Y. Sun, Y. Liu, Z. Lou, K. Yang, D. Lv, J. Zhou, S.A. Baig, X. Xu, Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization effects and removal mechanism, Chem. Eng. J., 344 (2018) 616–624.
  19. H. Wu, J.J. Chen, L.X. Xu, X.J. Guo, P. Fang, K. Du, C. Shen, G.D. Sheng, Decorating nanoscale FeS onto metal‒organic framework for the decontamination performance and mechanism of Cr(VI) and Se(IV), Colloids Surf., A, 625 (2021) 126887, doi: 10.1016/j.colsurfa.2021.126887.
  20. Z. Wang, M.C. Xing, W.K. Fang, D.Y. Wu, One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water, Appl. Surf. Sci., 366 (2016) 67–77.
  21. A. Teimouri, S.G. Nasab, N. Vandatpoor, S. Habibollahi, H. Salavati, A.N. Chermahini, Chitosan/zeolite Y/nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution, Int. J. Biol. Macromol., 93 (2016) 254‒266.
  22. D.D. Zhao, Y. Yu, J.P. Chen, Fabrication and testing of zirconiumbased nanoparticle doped activated carbon fiber for enhanced arsenic removal in water, RSC Adv., 6 (2016) 27020–27030.
  23. Y.-W. Wu, J. Zhang, J.-F. Liu, L. Chen, Z.-L. Deng, M.-X. Han, X.-S. Wei, A.-M. Yu, H.-L. Zhang, Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples, Appl. Surf. Sci., 258 (2012) 6772–6776.
  24. H.Y. Wu, Y.T. Liu, B. Chen, F. Yang, L.M. Wang, Q.P. Kong, T.R. Ye, J.J. Lian, Enhanced adsorption of molybdenum(VI) from aquatic solutions by chitosan-coated zirconium–iron sulfide composite, Sep. Purif. Technol., 279 (2021) 119736, doi: 10.1016/j.seppur.2021.119736.
  25. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter, 54 (1996) 11169–11186.
  26. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B: Condens. Matter, 47 (1993) 222–229.
  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865–3868.
  28. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B: Condens. Matter, 59 (1999) 1758–1775.
  29. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B: Condens. Matter, 50 (1994) 17953–17979.
  30. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B: Condens. Matter, 13 (1976) 1746–1747.
  31. G. Kim, G. Kwon, H. Lee, The role of surface hydroxyl groups on a single-atomic Rh1/ZrO2 catalyst for direct methane oxidation, Chem. Commun., 57 (2021) 1671‒1674.
  32. Y. Sun, Z. Lou, J. Yu, X. Zhou, D. Lv, J. Zhou, S.A. Baig, X. Xu, Immobilization of mercury(II) from aqueous solution using Al2O3-supported nanoscale FeS, Chem. Eng. J., 323 (2017) 483–491.
  33. A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55 (2004) 77–93.
  34. J.J. Lian, F.J. Zhou, B. Chen, M. Yang, S.S. Wang, Z.L. Liu, S.P. Niu, Enhanced adsorption of molybdenum(VI) onto drinking water treatment residues modified by thermal treatment and acid activation, J. Cleaner Prod., 244 (2020) 118719, doi: 10.1016/j.jclepro.2019.118719.
  35. J.J. Lian, Y.G. Huang, B. Chen, S.S. Wang, P. Wang, S.P. Niu, Z.L. Liu, Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: adsorption kinetic, isotherm and mechanism studies, Water Sci. Technol., 2017 (2018) 859–868.
  36. A. Afkhami, A.R. Norooz, Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles, Colloids Surf., A, 346 (2009) 52‒57.
  37. H. Sepehrian, S. Waqif-Husain, J. Fasihi, M.K. Mahani, Adsorption behavior of molybdenum on modified mesoporous zirconium silicates, Sep. Sci. Technol., 45 (2010) 421–426.
  38. D. Lv, J.S. Zhou, Z. Cao, J. Xu, Y.L. Liu, Y.Z. Li, K.L. Yang, Z.M. Lou, L.P. Lou, X.H. Xu, Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron, Chemosphere, 224 (2019) 306–315.
  39. L.J. Wang, M.X. Wang, Z.J. Li, Y.Y. Gong, Enhanced removal of trace mercury from surface water using a novel Mg2Al layered double hydroxide supported iron sulfide composite, Chem. Eng. J., 393 (2020) 124635, doi: 10.1016/j.cej.2020.124635.
  40. T. Zeeshan, M.T. Qureshi, Z.N. Kayani, A. Arshad, F. Ullah, R.A. Hameed, H. Ragab, N. Alam, W. Rehman, M. Saleem, A comparative computational and experimental study of Al–ZrO2 thin films for optoelectronic applications, Solid State Commun., 358 (2022) 115006, doi: 10.1016/j.ssc.2022.115006.
  41. H.R. Dong, C. Zhang, J.M. Deng, Z. Jiang, L.H. Zhang, Y.J. Cheng, K.J. Hou, L. Tang, G.M. Zeng, Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution, Water Res., 135 (2018) 1–10.
  42. Z. Chen, H. Luo, H. Rong, Development of polyaminated chitosan-zirconium(IV) complex bead adsorbent for highly efficient removal and recovery of phosphorus in aqueous solutions, Int. J. Biol. Macromol., 164 (2020) 1183‒1193.
  43. D.X. Qian, Y.M. Su, Y.X. Huang, H.Q. Chu, X.F. Zhou, Y.L. Zhang, Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron, J. Hazard. Mater., 344 (2018) 698–706.
  44. Y.Z. Song, W. Zhang, J. Chen, Y.T. Lu, J. Song, L.L. Zhang, J.M. Xie, Y. Ye, Synthesis of FeS nanoparticles for the catalytic reduction of 2,4-dinitrochlorobenzene, Russ. J. Phys. Chem. A, 94 (2020) 1184‒1189.
  45. J. Duan, H.D. Ji, X. Zhao, S.T. Tian, X.N. Liu, W. Liu, D.Y. Zhao, Immobilization of U(VI) by stabilized iron sulfide nanoparticles: water chemistry effects, mechanisms, and longterm stability, Chem. Eng. J., 393 (2020) 124692, doi: 10.1016/j.cej.2020.124692.
  46. J. Su, H. Hao, X. Lv, X. Jin, Q. Yang, Properties and mechanism of hexavalent chromium removal by FeS@graphite carbon nitride nanocomposites, Colloids Surf., A, 597 (2020) 124751, doi: 10.1016/j.colsurfa.2020.124751.
  47. X.Z. Wang, S.L. Pan, M. Zhang, J.W. Qi, X.Y. Sun, C. Gu, L.J. Wang, J.S. Li, Modified hydrous zirconium oxide/PAN nanofibers for efficient defluorination from groundwater, Sci. Total Environ., 685 (2019) 401–409.
  48. J.J. Lian, M. Yang, S.S. Wang, B. Chen, F.J. Zhou, Z.L. Liu, Treatment of molybdenum(VI)-containing groundwater using chitosan nanoparticle: adsorption mechanism and performances, Desal. Water Treat., 167 (2019) 258–268.
  49. D.Y. Dzade, N.H. de Leeuw, Activating the FeS(001) surface for CO2 adsorption and reduction through the formation of sulfur vacancies: a DFT-D3 study, Catalysts, 11 (2021) 127, doi: 10.3390/catal11010127.
  50. J. Li, Q. Zhang, J. Feng, W. Yan, Synthesis of PPy-modified TiO2 composite in H2SO4 solution and its novel adsorption characteristics for organic dyes, Chem. Eng. J., 225 (2013) 766–775.
  51. C.Y. Chen, J.C. Chang, A.H. Chen, Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked chitosan nanoparticles, J. Hazard. Mater., 185 (2011) 430–441.