References
- C. Ma, A. Vasileiadis, H.T. Wolterbeek, A.G. Denkova, P. Serra
Crespo, Adsorption of molybdenum on Zr-based MOFs for
potential application in the 99Mo/99mTc generator, Appl. Surf.
Sci., 572 (2022) 151340, doi: 10.1016/j.apsusc.2021.151340.
- W.R. Chappell, R.R. Meglen, R. Moure-Eraso, C.C. Solomons,
T.A. Tsongas, P.A. Walravens, P.W. Winston, Human Health
Effects of Molybdenum in Drinking Water, U.S. EPA Report,
1979.
- A.Y. Ahmad, M.A. Al-Ghouti, M. Khraisheh, N. Zouari,
Insights into the removal of lithium and molybdenum from
groundwater by adsorption onto activated carbon, bentonite,
roasted date pits, and modified-roasted date pits, Bioresour.
Technol., 18 (2022) 101045, doi: 10.1016/j.biteb.2022.101045.
- L.W. Yao, Y.H. Liu, K. Yang, X. Xi, R.Q. Niu, C. Ren, C.S. Wang,
Spatial-temporal analysis and background value determination
of molybdenum concentration in basins with high
molybdenum geochemical background –
a case study of the
Upper Yi River Basin, J. Environ. Manage., 286 (2021) 112199,
doi: 10.1016/j.jenvman.2021.112199.
- I. Timofeev, N. Kosheleva, N. Kasimov, Contamination of soils
by potentially toxic elements in the impact zone of tungstenmolybdenum
ore mine in the Baikal region: a survey and
risk assessment, Sci. Total Environ., 642 (2018) 63–76.
- G. Tepanosyan, L. Sahakyan, C. Zhang, A. Saghatelyan, The
application of local Moran’s I to identify spatial clusters
and hot spots of Pb, Mo and Ti in urban soils of Yerevan,
Appl. Geochem., 104 (2019) 116–123.
- Z. Wang, C. Hong, Y. Xing, K. Wang, Y. Li, L. Feng, S. Ma,
Spatial distribution and sources of heavy metals in natural
pasture soil around copper-molybdenum mine in Northeast
China, Ecotoxicol. Environ. Saf., 154 (2018) 3296, doi: 10.1016/j.ecoenv.2018.02.048.
- J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez,
R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Generalized
molybdenum oxide surface chemical state XPS determination
via informed amorphous sample model, Appl. Surf. Sci.,
326 (2015) 151‒161.
- R. Gamal, S.E. Rizk, N.E. El-Hefny, The adsorptive removal
of Mo(VI) from aqueous solution by a synthetic magnetic
chromium ferrite nanocomposite using a nonionic surfactant,
J. Alloys Compd., 853 (2021) 157039, doi: 10.1016/j.jallcom.2020.157039.
- F. Guo, X.L. Xi, L.W. Ma, Z.R. Nie, Property and mechanism
on sorption of molybdenum from tungstate solution with
a porous amine resin, J. Cleaner Prod., 335 (2022) 130304,
doi: 10.1016/j.jclepro.2021.130304.
- S.H.R. Rouhani, R. Davarkhah, P. Zaheri, S.M.A. Mousavian,
Separation of molybdenum from spent HDS catalysts using
emulsion liquid membrane system, Chem. Eng. Process.,
153 (2020) 107958, doi: 10.1016/j.cep.2020.107958.
- Y.J. Tu, T.S. Chan, H.W. Tu, S.L. Wang, C.F. You, C.K. Chang,
Rapid and efficient removal/recovery of molybdenum onto
ZnFe2O4 nanoparticles, Chemosphere, 148 (2016) 452–458.
- Y.C. Chen, C.Y. Lu, Kinetics, thermodynamics and regeneration
of molybdenum adsorption in aqueous solutions with NaOCl-oxidized
multiwalled carbon nanotubes, J. Ind. Eng. Chem.,
20 (2014) 2521–2527.
- B. Verbinnen, C. Block, P. Lievens, A. Van Brecht, C.
Vandecasteele, Simultaneous removal of molybdenum,
antimony and selenium
oxyanions from wastewater
by adsorption on supported magnetite, Waste Biomass
Valorization, 4 (2013) 635–645.
- B.C. Bostick, S. Fendorf, Differential adsorption of molybdate
and tetrathiomolybdate on pyrite (FeS2), Environ. Sci. Technol.,
37 (2003) 285‒291.
- J.J. Lian, H.L. Wang, H.P. He, W.L. Huang, M. Yang, Y. Zhong,
P.A. Peng, The reaction of amorphous iron sulfide with Mo(VI)
under different pH conditions, Chemosphere, 266 (2021)
128946, doi: 10.1016/j.chemosphere.2020.128946.
- M. Xiao, X. Lai, J. He, J. Huang, Z. Tang, R. Wu, J. Jian, Highly
efficient removal of aqueous Hg(II) by FeS
micro-flakes, Sci. Total
Environ., 870 (2023) 162013, doi: 10.1016/j.scitotenv.2023.162013.
- Y. Sun, Y. Liu, Z. Lou, K. Yang, D. Lv, J. Zhou, S.A. Baig, X. Xu,
Enhanced performance for Hg(II) removal using biomaterial
(CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization
effects and removal mechanism, Chem. Eng. J., 344 (2018)
616–624.
- H. Wu, J.J. Chen, L.X. Xu, X.J. Guo, P. Fang, K. Du, C. Shen,
G.D. Sheng, Decorating nanoscale FeS onto metal‒organic
framework for the decontamination performance and
mechanism of Cr(VI) and Se(IV), Colloids Surf., A, 625 (2021)
126887, doi: 10.1016/j.colsurfa.2021.126887.
- Z. Wang, M.C. Xing, W.K. Fang, D.Y. Wu, One-step synthesis
of magnetite core/zirconia shell nanocomposite for high
efficiency removal of phosphate from water, Appl. Surf. Sci.,
366 (2016) 67–77.
- A. Teimouri, S.G. Nasab, N. Vandatpoor, S. Habibollahi,
H. Salavati, A.N. Chermahini, Chitosan/zeolite Y/nano ZrO2
nanocomposite as an adsorbent for the removal of nitrate from
the aqueous solution, Int. J. Biol. Macromol., 93 (2016) 254‒266.
- D.D. Zhao, Y. Yu, J.P. Chen, Fabrication and testing of zirconiumbased
nanoparticle doped activated carbon fiber for enhanced
arsenic removal in water, RSC Adv., 6 (2016) 27020–27030.
- Y.-W. Wu, J. Zhang, J.-F. Liu, L. Chen, Z.-L. Deng, M.-X. Han,
X.-S. Wei, A.-M. Yu, H.-L. Zhang, Fe3O4@ZrO2 nanoparticles
magnetic solid phase extraction coupled with flame atomic
absorption spectrometry for chromium(III) speciation in
environmental and biological samples, Appl. Surf. Sci.,
258 (2012) 6772–6776.
- H.Y. Wu, Y.T. Liu, B. Chen, F. Yang, L.M. Wang, Q.P. Kong,
T.R. Ye, J.J. Lian, Enhanced adsorption of molybdenum(VI)
from aquatic solutions by chitosan-coated zirconium–iron
sulfide composite, Sep. Purif. Technol., 279 (2021) 119736,
doi: 10.1016/j.seppur.2021.119736.
- G. Kresse, J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B: Condens. Matter, 54 (1996) 11169–11186.
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid
metals, Phys. Rev. B: Condens. Matter, 47 (1993) 222–229.
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett., 77 (1996)
3865–3868.
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the
projector augmented-wave method, Phys. Rev. B: Condens.
Matter, 59 (1999) 1758–1775.
- P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B:
Condens. Matter, 50 (1994) 17953–17979.
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone
integrations, Phys. Rev. B: Condens. Matter, 13 (1976) 1746–1747.
- G. Kim, G. Kwon, H. Lee, The role of surface hydroxyl groups
on a single-atomic Rh1/ZrO2 catalyst for direct methane
oxidation, Chem. Commun., 57 (2021) 1671‒1674.
- Y. Sun, Z. Lou, J. Yu, X. Zhou, D. Lv, J. Zhou, S.A. Baig, X. Xu,
Immobilization of mercury(II) from aqueous solution using
Al2O3-supported nanoscale FeS, Chem. Eng. J., 323 (2017)
483–491.
- A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation
by chitosan and its derivatives: a review, Carbohydr. Polym.,
55 (2004) 77–93.
- J.J. Lian, F.J. Zhou, B. Chen, M. Yang, S.S. Wang, Z.L. Liu, S.P. Niu,
Enhanced adsorption of molybdenum(VI) onto drinking water
treatment residues modified by thermal treatment and acid
activation, J. Cleaner Prod., 244 (2020) 118719, doi: 10.1016/j.jclepro.2019.118719.
- J.J. Lian, Y.G. Huang, B. Chen, S.S. Wang, P. Wang, S.P. Niu,
Z.L. Liu, Removal of molybdenum(VI) from aqueous solutions
using nano zero-valent iron supported on biochar enhanced
by cetyl-trimethyl ammonium bromide: adsorption kinetic,
isotherm and mechanism studies, Water Sci. Technol., 2017
(2018) 859–868.
- A. Afkhami, A.R. Norooz, Removal, preconcentration and
determination of Mo(VI) from water and wastewater samples
using maghemite nanoparticles, Colloids Surf., A, 346 (2009)
52‒57.
- H. Sepehrian, S. Waqif-Husain, J. Fasihi, M.K. Mahani, Adsorption
behavior of molybdenum on modified mesoporous
zirconium silicates, Sep. Sci. Technol., 45 (2010) 421–426.
- D. Lv, J.S. Zhou, Z. Cao, J. Xu, Y.L. Liu, Y.Z. Li, K.L. Yang,
Z.M. Lou, L.P. Lou, X.H. Xu, Mechanism and influence factors
of chromium(VI) removal by sulfide-modified nanoscale
zerovalent iron, Chemosphere, 224 (2019) 306–315.
- L.J. Wang, M.X. Wang, Z.J. Li, Y.Y. Gong, Enhanced removal of
trace mercury from surface water using a novel Mg2Al layered
double hydroxide supported iron sulfide composite, Chem.
Eng. J., 393 (2020) 124635, doi: 10.1016/j.cej.2020.124635.
- T. Zeeshan, M.T. Qureshi, Z.N. Kayani, A. Arshad, F. Ullah,
R.A. Hameed, H. Ragab, N. Alam, W. Rehman, M. Saleem,
A comparative computational and experimental study of Al–ZrO2 thin films for optoelectronic applications, Solid State
Commun., 358 (2022) 115006, doi: 10.1016/j.ssc.2022.115006.
- H.R. Dong, C. Zhang, J.M. Deng, Z. Jiang, L.H. Zhang,
Y.J. Cheng, K.J. Hou, L. Tang, G.M. Zeng, Factors influencing
degradation of trichloroethylene by sulfide-modified nanoscale
zero-valent iron in aqueous solution, Water Res., 135 (2018)
1–10.
- Z. Chen, H. Luo, H. Rong, Development of polyaminated
chitosan-zirconium(IV) complex bead adsorbent for highly
efficient removal and recovery of phosphorus in aqueous
solutions, Int. J. Biol. Macromol., 164 (2020) 1183‒1193.
- D.X. Qian, Y.M. Su, Y.X. Huang, H.Q. Chu, X.F. Zhou,
Y.L. Zhang, Simultaneous molybdate (Mo(VI)) recovery and
hazardous ions immobilization via nanoscale zerovalent iron,
J. Hazard. Mater., 344 (2018) 698–706.
- Y.Z. Song, W. Zhang, J. Chen, Y.T. Lu, J. Song, L.L. Zhang,
J.M. Xie, Y. Ye, Synthesis of FeS nanoparticles for the catalytic
reduction of 2,4-dinitrochlorobenzene, Russ. J. Phys. Chem. A,
94 (2020) 1184‒1189.
- J. Duan, H.D. Ji, X. Zhao, S.T. Tian, X.N. Liu, W. Liu,
D.Y. Zhao, Immobilization of U(VI) by stabilized iron sulfide
nanoparticles: water chemistry effects, mechanisms, and longterm
stability, Chem. Eng. J., 393 (2020) 124692, doi: 10.1016/j.cej.2020.124692.
- J. Su, H. Hao, X. Lv, X. Jin, Q. Yang, Properties and mechanism
of hexavalent chromium removal by FeS@graphite carbon
nitride nanocomposites, Colloids Surf., A, 597 (2020) 124751,
doi: 10.1016/j.colsurfa.2020.124751.
- X.Z. Wang, S.L. Pan, M. Zhang, J.W. Qi, X.Y. Sun, C. Gu,
L.J. Wang, J.S. Li, Modified hydrous zirconium oxide/PAN
nanofibers for efficient defluorination from groundwater,
Sci. Total Environ., 685 (2019) 401–409.
- J.J. Lian, M. Yang, S.S. Wang, B. Chen, F.J. Zhou, Z.L. Liu,
Treatment of molybdenum(VI)-containing groundwater
using chitosan nanoparticle: adsorption mechanism and
performances, Desal. Water Treat., 167 (2019) 258–268.
- D.Y. Dzade, N.H. de Leeuw, Activating the FeS(001) surface
for CO2 adsorption and reduction through the formation of
sulfur vacancies: a DFT-D3 study, Catalysts, 11 (2021) 127,
doi: 10.3390/catal11010127.
- J. Li, Q. Zhang, J. Feng, W. Yan, Synthesis of PPy-modified
TiO2 composite in H2SO4 solution and its novel adsorption
characteristics for organic dyes, Chem. Eng. J., 225 (2013)
766–775.
- C.Y. Chen, J.C. Chang, A.H. Chen, Competitive biosorption of
azo dyes from aqueous solution on the templated crosslinked
chitosan nanoparticles, J. Hazard. Mater., 185 (2011) 430–441.