References
- M. Zatout, R.L. López Steinmetz, M. Hacini, S.B. Fong, A. M’nif,
A.H. Hamzaoui, L.C. López Steinmetz, Saharan lithium: brine
chemistry of chotts from eastern Algeria, Appl. Geochem.,
115 (2020) 104566, doi: 10.1016/j.apgeochem.2020.104566.
- A. Guendouz, A.S. Moulla, W.M. Edmunds, K. Zouari, P. Shand,
A. Mamou, Hydrogeochemical and isotopic evolution of water
in the Complexe Terminal aquifer in the Algerian Sahara,
Hydrogeol. J., 11 (2003) 483–495.
- M.S.M. Abdel Wahed, E.A. Mohamed, M.I. El-Sayed, A. M’nif,
M. Sillanpää, Crystallization sequence during evaporation of a
high concentrated brine involving the system Na–K–Mg–Cl–SO4-H2O, Desalination, 355 (2015) 11–21.
- C. Djebali, L. Zayani, A. M’nif, R. Rokbani, Etude sur la
réactivation des saumures naturelles du sud tunisien, J. Soc.
Chim. Tunis., 4 (1998) 233–244.
- M. Zatout, Geochemistry and Mining Potential of Lithium in
the Southern Algerian Chotts: Basin of Ouargla, Melghir and
Merouane, Dissertation, Kasdi Merbah University, Ouargla,
Algeria, 2017, 168 p.
- M. Bąbel, B. Charlotte Schreiber, Chapter 9.18 – Geochemistry
of Evaporites and Evolution of Seawater, M. Fred, Ed., Treatise
on Geochemistry, 2nd ed., Vol. 9, Sediments, Diagenesis,
and Sedimentary Rocks, Elsevier, Oxford, 2014, pp. 483–560,
doi: 10.1016/B978-0-08-095975-7.00718-X.
- C. Funk, S. Shukla, Chapter 7 – Theory—Understanding
Atmospheric Demand in a Warming World, C. Funk, S. Shukla,
Eds., Drought Early Warning and Forecasting, Elsevier,
Amsterdam, Netherlands, 2020, pp. 101–115, doi: 10.1016/B978-0-12-814011-6.00007-5.
- A. Katz, A. Starinsky, Geochemical history of the Dead Sea,
Aquat. Geochem., 15 (2009) 159–194.
- A.M. Salhotra, E. Eric Adams, D.R.F. Harleman, Effect of
salinity and ionic composition on evaporation: analysis of dead
sea evaporation pans, Water Resour. Res., 21 (1985) 1336–1344.
- C.E. Harvie, J.H. Weare, The prediction of mineral solubilities
in natural waters: the Na-K-Mg-Ca-Cl-SO4/H2O system from
zero to high concentration at 25°C, Geochim. Cosmochim.
Acta, 44 (1984) 981–997.
- C.E. Harvie, N. Møller, J.H. Weare, The prediction of mineral
solubilities in natural waters:
the Na-K-Mg-Ca-H-Cl-SO4-OHHCO3-CO3-CO2-H2O system to high ionic strengths at 25°C,
Geochim. Cosmochim. Acta, 48 (1984) 723–751.
- I. Grenthe, A. Plyasunov, On the use of semiempirical
electrolyte theories for modeling of solution chemical data,
Pure Appl. Chem., 69 (1997) 951–958.
- C. Ye, J. Mao, Y. Ren, Y. Li, Y. Lin, I.M. Power, Y. Luo, Salt
crystallization sequences of nonmarine brine and their
application for the formation of potassium deposits, Aquat.
Geochem., 24 (2018) 209–229.
- M.A. McCaffrey, B. Lazar, H.D. Holland, The evaporation path
of seawater and the coprecipitation of Br– and K+ with halite,
J. Sediment. Petrol., 57 (1987) 928–938.
- D.M. Deocampo, B.F. Jones, Chapter 7.13 – Geochemistry of
Saline Lakes, H.D. Holland, K.K. Turekian, Eds., Treatise on
Geochemistry, Vol. 7, Surface and Groundwater, Weathering,
and Soils, 2nd ed., Elsevier, Oxford, 2014, pp. 437–469,
doi: 10.1016/B978-0-08-095975-7.00515-5.
- A. Haddane, M. Hacini, A. Bellaoueur, A.H. Hamzaoui,
A. M’Nif, Effect of evaporite paleo-lacustrine facies on the
brines geochemistry, economy implication. Case of chott
Bagdad El Hadjira Ouargla, South-Eastern Algeria, Energy
Procedia, 119 (2017) 228–235.
- A. Lamini, Minéralogie des chotts de la région d’El Hadjira,
Kasdi Merbah Ouargla, 2012.
- A. Lamini, M. Hacini, Geology and geochemistry of
endoroique basin case of Baghdad chott southern of Algeria,
AIP Conf. Proc., 1968 (2018), doi: 10.1063/1.5039165.
- M. Zatout, M. Hacini, A. Lamini, S.B. Fong, A.H. Hamzaoui,
A. M’nif, M.S.M. Abdel Wahed, Geochemical characterization
of the Southern Algerian brines using PHREEQC software
and the Jänecke solubility phase diagram, Arabian J. Geosci.,
15 (2022) 1247, doi: 10.1007/s12517-022-10441-7.
- M. Zatout, M. Hacini, A.H. Hamzaoui, A. M’nif, Sequence
crystallization during isotherm evaporation of southern
Algeria Chott Baghdad natural brine, J. Fundam. Appl. Sci.,
9 (2017) 959, doi: 10.4314/jfas.v9i2.22.
- Z. Janecke, Erganzung zu der neuen Darstellungsform der
van’t Hoffschen Untersuchungen (Complement to the new
form of the van’t Hoff’s investigations), Anorg. Allgem. Chem.,
53 (1907) 319.
- H. Hammi, J. Musso, A. M’nif, R. Rokbani, Tunisian salt lakes
evaporation studied by the DPAO method based on solubility
phase diagrams, Desalination, 158 (2003) 215-220.
- H. Hammi, A. M’nif, R. Rokbani, Étude de l’évaporation d’une
saumure naturelle. Corrélation conductivité-concentrations
ioniques (Na+, K+, Mg2+, Cl–, SO42-), J. Phys. IV France, 11 (2001)
Pr10-63 – Pr10-70, doi: 10.1051/jp4:20011008.
- S. Attia-Essaies, L. Zayani, D. Ben Hassen Chehimi, R. Cohen
Adad, N. Kbir Ariguib, M. Trabelsi-Ayadi, Simulation of
crystallization sequence during the evaporation of Chott El
Jerid brine (south Tunisia), Thermochim. Acta, 503–504 (2010)
8–11.
- F. Khlissa, A. M’nif, R. Solimando, R. Rokbani, Prediction
of mineral precipitation during isotherm evaporation of
southern Tunisian natural brines, Desalination, 166 (2004)
261–266.
- A. M’nif, R. Rokbani, Minerals successions crystallisation
related to Tunisian natural brines, Cryst. Res. Technol., 39 (2004)
40–49.
- W. Voigt, What we know and still not know about oceanic
salts, Pure Appl. Chem., 87 (2015) 1099–1126.
- D. Benavente, P. Brimblecombe, C.M. Grossi, Thermodynamic
calculations for the salt crystallisation damage in porous
built heritage using PHREEQC, Environ. Earth Sci., 74 (2015)
2297–2313.
- S. Attia Essaies, L. Zayani, D. Ben, D.B.H. Chehimi, M. Trabelsi
Ayadi, An Indian Journal, Study of the evaporation of Tunisian
brine (Chott El Jerid) comparison between the sequences of
crystallization experimental and theoretical, Mater. Sci., 9 (2013)
367–371.
- Chr. Balarew, Solubilities in seawater-type systems: some
technical and environmental friendly applications, Pure Appl.
Chem., 65 (1993) 213–218.
- M. Smith, J.S. Compton, Origin and evolution of major salts in
the Darling pans, Western Cape, South Africa, Appl. Geochem.,
19 (2004) 645–664.
- R. Barzegar, A. Asghari Moghaddam, A.H. Nazemi,
J. Adamowski, Evidence for the occurrence of hydrogeochemical
processes in the groundwater of Khoy plain, northwestern
Iran, using ionic ratios and geochemical modeling, Environ.
Earth Sci., 77 (2018) 597, doi: 10.1007/s12665-018-7782-y.
- D.L. Parkhurst, C.A.J. Appelo, Description of Input and
Examples for PHREEQC Version 3—A Computer Program
for Speciation, Batch-Reaction, One-Dimensional Transport,
and Inverse Geochemical Calculations, U.S. Geological
Survey, Denver, Colorado, 2013. doi: 10.1097/00000446-195210000-00005
- Y. Rafighdoust, Y. Eckstein, R.M. Harami, M.H.M. Gharaie,
A. Mahboubi, Using inverse modeling and hierarchical cluster
analysis for hydrochemical characterization of springs and
Talkhab River in Tang-Bijar oilfield, Iran, Arabian J. Geosci.,
9 (2016) 241, doi: 10.1007/s12517-015-2129-4.
- K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis
and general equations, J. Phys. Chem., 77 (1973) 268–277.
- I.K. Zherebtsova, N.N. Volkova, Experimental study of behavior
of trace elements in the process of natural solar evaporation
of Black Sea water and Sasyk–Sivash brine, Geochem. Int.,
7 (1966) 656–670.
- L. Zayani, R. Rokbani, Crystallisation of oceanic salts, J. Therm.
Anal. Calorim., 57 (1999) 575–585.
- I. Prigogine, R. Defay, Thermodynamique Chimique, Éditions
Desoer, Dunod, Liège, Paris, 1950.
- P. Lu, G. Zhang, J. Apps, C. Zhu, Comparison of thermodynamic
data files for PHREEQC, Earth Sci. Rev., 225 (2022) 103888,
doi: 10.1016/j.earscirev.2021.103888.
- N.S. Kurnakov, V.I. Nikolaev, Izv. Sekt. Fiz. Khim. Anal. 10,
333 (1938), N.S. Kurn, Moscow, 1963.
- O. Braitsch, The Stability Conditions of Salt Minerals, in: Salt
Deposits Their Origin and Composition. Minerals, Rocks and
Inorganic Materials, Vol. 4, Springer, Berlin, Heidelberg, 1971, pp.
27–83.
doi: 10.1007/978-3-642-65083-3_2
- J. D’ans, The Solution Equilibria of Systems of Salts of Oceanic
Salt Deposits, VerI. Ges., 254 S. Potash Research Institute,
Berlin, 1933.
- H. Autenrieth, New Studies on the Quinary NaCl-Saturated
System of Salts of Oceanic Saiz Deposits Important for Potash
Crude Ore Processing, Kali u.Steinsalz. 1, H. (1955) 18–32.
- V.R.K.S. Susarla, K. Seshadri, Equilibria in the system containing
chloride and sulphates of potassium and magnesium,
Proc. Indian Acad. Sci. - Chem. Sci., 91 (1982) 315–320.
- H. Autenrieth, The stable and metastable equilibria of the
reciprocal salt pair K2Cl2 + MgSO4 + K2SO4 + MgCl2 without and
with NaCl as the soil body, and their application in practice,
Kali u. Steinsalz. 1, H. (1954) 3–22.
- J. D’ans, Untersuchungen iiber die Salzsysteme ozeanischer
Salzablagerungen, Exp. Bearbeitet Mit A. Bertsch Und A.
Gessner. Kali., 9 (1915).
- J.H. Van’t Hoff, Sitzung vom 9. October 1905, 38, Ber. Dtsch.
Chem. Ges., 38 (1905) 3211–3216.
- R. Slimani, A. Guendouz, F. Trolard, A.-S. Moulla, B. Hamdi-Aïssa, G. Bourrié, Geochemical inverse modeling of chemical
and isotopic data from groundwaters in Sahara (Ouargla basin,
Algeria), Hydrol. Earth Syst. Sci. Discuss., (2016) 1–49.
- D.L. Parkhurst, A. Tony, User’s Guide to PHREEQC Version
3 - A Computer Program for Speciation, Batch-Reaction, One-
Dimensional Transport, and Inverse Geochemical Calculations,
Colorado, 1999.
- R.G. Bryant, B.W. Sellwood, A.C. Millington, N.A. Drake,
Marine-like potash evaporite formation on a continental playa:
case study from Chott el Djerid, southern Tunisia, Sediment.
Geol., 90 (1994) 269–291.