References

  1. M. Zatout, R.L. López Steinmetz, M. Hacini, S.B. Fong, A. M’nif, A.H. Hamzaoui, L.C. López Steinmetz, Saharan lithium: brine chemistry of chotts from eastern Algeria, Appl. Geochem., 115 (2020) 104566, doi: 10.1016/j.apgeochem.2020.104566.
  2. A. Guendouz, A.S. Moulla, W.M. Edmunds, K. Zouari, P. Shand, A. Mamou, Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara, Hydrogeol. J., 11 (2003) 483–495.
  3. M.S.M. Abdel Wahed, E.A. Mohamed, M.I. El-Sayed, A. M’nif, M. Sillanpää, Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4-H2O, Desalination, 355 (2015) 11–21.
  4. C. Djebali, L. Zayani, A. M’nif, R. Rokbani, Etude sur la réactivation des saumures naturelles du sud tunisien, J. Soc. Chim. Tunis., 4 (1998) 233–244.
  5. M. Zatout, Geochemistry and Mining Potential of Lithium in the Southern Algerian Chotts: Basin of Ouargla, Melghir and Merouane, Dissertation, Kasdi Merbah University, Ouargla, Algeria, 2017, 168 p.
  6. M. Bąbel, B. Charlotte Schreiber, Chapter 9.18 – Geochemistry of Evaporites and Evolution of Seawater, M. Fred, Ed., Treatise on Geochemistry, 2nd ed., Vol. 9, Sediments, Diagenesis, and Sedimentary Rocks, Elsevier, Oxford, 2014, pp. 483–560, doi: 10.1016/B978-0-08-095975-7.00718-X.
  7. C. Funk, S. Shukla, Chapter 7 – Theory—Understanding Atmospheric Demand in a Warming World, C. Funk, S. Shukla, Eds., Drought Early Warning and Forecasting, Elsevier, Amsterdam, Netherlands, 2020, pp. 101–115, doi: 10.1016/B978-0-12-814011-6.00007-5.
  8. A. Katz, A. Starinsky, Geochemical history of the Dead Sea, Aquat. Geochem., 15 (2009) 159–194.
  9. A.M. Salhotra, E. Eric Adams, D.R.F. Harleman, Effect of salinity and ionic composition on evaporation: analysis of dead sea evaporation pans, Water Resour. Res., 21 (1985) 1336–1344.
  10. C.E. Harvie, J.H. Weare, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4/H2O system from zero to high concentration at 25°C, Geochim. Cosmochim. Acta, 44 (1984) 981–997.
  11. C.E. Harvie, N. Møller, J.H. Weare, The prediction of mineral solubilities in natural waters:
    the Na-K-Mg-Ca-H-Cl-SO4-OHHCO3-CO3-CO2-H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta, 48 (1984) 723–751.
  12. I. Grenthe, A. Plyasunov, On the use of semiempirical electrolyte theories for modeling of solution chemical data, Pure Appl. Chem., 69 (1997) 951–958.
  13. C. Ye, J. Mao, Y. Ren, Y. Li, Y. Lin, I.M. Power, Y. Luo, Salt crystallization sequences of nonmarine brine and their application for the formation of potassium deposits, Aquat. Geochem., 24 (2018) 209–229.
  14. M.A. McCaffrey, B. Lazar, H.D. Holland, The evaporation path of seawater and the coprecipitation of Br and K+ with halite, J. Sediment. Petrol., 57 (1987) 928–938.
  15. D.M. Deocampo, B.F. Jones, Chapter 7.13 – Geochemistry of Saline Lakes, H.D. Holland, K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 7, Surface and Groundwater, Weathering, and Soils, 2nd ed., Elsevier, Oxford, 2014, pp. 437–469, doi: 10.1016/B978-0-08-095975-7.00515-5.
  16. A. Haddane, M. Hacini, A. Bellaoueur, A.H. Hamzaoui, A. M’Nif, Effect of evaporite paleo-lacustrine facies on the brines geochemistry, economy implication. Case of chott Bagdad El Hadjira Ouargla, South-Eastern Algeria, Energy Procedia, 119 (2017) 228–235.
  17. A. Lamini, Minéralogie des chotts de la région d’El Hadjira, Kasdi Merbah Ouargla, 2012.
  18. A. Lamini, M. Hacini, Geology and geochemistry of endoroique basin case of Baghdad chott southern of Algeria, AIP Conf. Proc., 1968 (2018), doi: 10.1063/1.5039165.
  19. M. Zatout, M. Hacini, A. Lamini, S.B. Fong, A.H. Hamzaoui, A. M’nif, M.S.M. Abdel Wahed, Geochemical characterization of the Southern Algerian brines using PHREEQC software and the Jänecke solubility phase diagram, Arabian J. Geosci., 15 (2022) 1247, doi: 10.1007/s12517-022-10441-7.
  20. M. Zatout, M. Hacini, A.H. Hamzaoui, A. M’nif, Sequence crystallization during isotherm evaporation of southern Algeria Chott Baghdad natural brine, J. Fundam. Appl. Sci., 9 (2017) 959, doi: 10.4314/jfas.v9i2.22.
  21. Z. Janecke, Erganzung zu der neuen Darstellungsform der van’t Hoffschen Untersuchungen (Complement to the new form of the van’t Hoff’s investigations), Anorg. Allgem. Chem., 53 (1907) 319.
  22. H. Hammi, J. Musso, A. M’nif, R. Rokbani, Tunisian salt lakes evaporation studied by the DPAO method based on solubility phase diagrams, Desalination, 158 (2003) 215-220.
  23. H. Hammi, A. M’nif, R. Rokbani, Étude de l’évaporation d’une saumure naturelle. Corrélation conductivité-concentrations ioniques (Na+, K+, Mg2+, Cl, SO42-), J. Phys. IV France, 11 (2001) Pr10-63 – Pr10-70, doi: 10.1051/jp4:20011008.
  24. S. Attia-Essaies, L. Zayani, D. Ben Hassen Chehimi, R. Cohen Adad, N. Kbir Ariguib, M. Trabelsi-Ayadi, Simulation of crystallization sequence during the evaporation of Chott El Jerid brine (south Tunisia), Thermochim. Acta, 503–504 (2010) 8–11.
  25. F. Khlissa, A. M’nif, R. Solimando, R. Rokbani, Prediction of mineral precipitation during isotherm evaporation of southern Tunisian natural brines, Desalination, 166 (2004) 261–266.
  26. A. M’nif, R. Rokbani, Minerals successions crystallisation related to Tunisian natural brines, Cryst. Res. Technol., 39 (2004) 40–49.
  27. W. Voigt, What we know and still not know about oceanic salts, Pure Appl. Chem., 87 (2015) 1099–1126.
  28. D. Benavente, P. Brimblecombe, C.M. Grossi, Thermodynamic calculations for the salt crystallisation damage in porous built heritage using PHREEQC, Environ. Earth Sci., 74 (2015) 2297–2313.
  29. S. Attia Essaies, L. Zayani, D. Ben, D.B.H. Chehimi, M. Trabelsi Ayadi, An Indian Journal, Study of the evaporation of Tunisian brine (Chott El Jerid) comparison between the sequences of crystallization experimental and theoretical, Mater. Sci., 9 (2013) 367–371.
  30. Chr. Balarew, Solubilities in seawater-type systems: some technical and environmental friendly applications, Pure Appl. Chem., 65 (1993) 213–218.
  31. M. Smith, J.S. Compton, Origin and evolution of major salts in the Darling pans, Western Cape, South Africa, Appl. Geochem., 19 (2004) 645–664.
  32. R. Barzegar, A. Asghari Moghaddam, A.H. Nazemi, J. Adamowski, Evidence for the occurrence of hydrogeochemical processes in the groundwater of Khoy plain, northwestern Iran, using ionic ratios and geochemical modeling, Environ. Earth Sci., 77 (2018) 597, doi: 10.1007/s12665-018-7782-y.
  33. D.L. Parkhurst, C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey, Denver, Colorado, 2013. doi: 10.1097/00000446-195210000-00005
  34. Y. Rafighdoust, Y. Eckstein, R.M. Harami, M.H.M. Gharaie, A. Mahboubi, Using inverse modeling and hierarchical cluster analysis for hydrochemical characterization of springs and Talkhab River in Tang-Bijar oilfield, Iran, Arabian J. Geosci., 9 (2016) 241, doi: 10.1007/s12517-015-2129-4.
  35. K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem., 77 (1973) 268–277.
  36. I.K. Zherebtsova, N.N. Volkova, Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk–Sivash brine, Geochem. Int., 7 (1966) 656–670.
  37. L. Zayani, R. Rokbani, Crystallisation of oceanic salts, J. Therm. Anal. Calorim., 57 (1999) 575–585.
  38. I. Prigogine, R. Defay, Thermodynamique Chimique, Éditions Desoer, Dunod, Liège, Paris, 1950.
  39. P. Lu, G. Zhang, J. Apps, C. Zhu, Comparison of thermodynamic data files for PHREEQC, Earth Sci. Rev., 225 (2022) 103888, doi: 10.1016/j.earscirev.2021.103888.
  40. N.S. Kurnakov, V.I. Nikolaev, Izv. Sekt. Fiz. Khim. Anal. 10, 333 (1938), N.S. Kurn, Moscow, 1963.
  41. O. Braitsch, The Stability Conditions of Salt Minerals, in: Salt Deposits Their Origin and Composition. Minerals, Rocks and Inorganic Materials, Vol. 4, Springer, Berlin, Heidelberg, 1971, pp. 27–83.
    doi: 10.1007/978-3-642-65083-3_2
  42. J. D’ans, The Solution Equilibria of Systems of Salts of Oceanic Salt Deposits, VerI. Ges., 254 S. Potash Research Institute, Berlin, 1933.
  43. H. Autenrieth, New Studies on the Quinary NaCl-Saturated System of Salts of Oceanic Saiz Deposits Important for Potash Crude Ore Processing, Kali u.Steinsalz. 1, H. (1955) 18–32.
  44. V.R.K.S. Susarla, K. Seshadri, Equilibria in the system containing chloride and sulphates of potassium and magnesium, Proc. Indian Acad. Sci. - Chem. Sci., 91 (1982) 315–320.
  45. H. Autenrieth, The stable and metastable equilibria of the reciprocal salt pair K2Cl2 + MgSO4 + K2SO4 + MgCl2 without and with NaCl as the soil body, and their application in practice, Kali u. Steinsalz. 1, H. (1954) 3–22.
  46. J. D’ans, Untersuchungen iiber die Salzsysteme ozeanischer Salzablagerungen, Exp. Bearbeitet Mit A. Bertsch Und A. Gessner. Kali., 9 (1915).
  47. J.H. Van’t Hoff, Sitzung vom 9. October 1905, 38, Ber. Dtsch. Chem. Ges., 38 (1905) 3211–3216.
  48. R. Slimani, A. Guendouz, F. Trolard, A.-S. Moulla, B. Hamdi-Aïssa, G. Bourrié, Geochemical inverse modeling of chemical and isotopic data from groundwaters in Sahara (Ouargla basin, Algeria), Hydrol. Earth Syst. Sci. Discuss., (2016) 1–49.
  49. D.L. Parkhurst, A. Tony, User’s Guide to PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One- Dimensional Transport, and Inverse Geochemical Calculations, Colorado, 1999.
  50. R.G. Bryant, B.W. Sellwood, A.C. Millington, N.A. Drake, Marine-like potash evaporite formation on a continental playa: case study from Chott el Djerid, southern Tunisia, Sediment. Geol., 90 (1994) 269–291.